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Summary. — Developments in the physical modelling of the Earth’s interior and
space geodesy make it possible nowadays to exploit the gravity signature and defor-
mation patterns, including their time variations, caused by megathrust earthquakes
at subduction zones with moment magnitude Mw higher than 9.0, as the 2004 Suma-
tran and 2011 Tohoku-Oki ones. In order to achieve these goals, it has been necessary
to develop realistic self-gravitating, compressible Earth’s models, stratified in terms
of density and rheological properties of the Earth’s interior. This new class of mod-
els allows us to comprehend some not yet fully appreciated mathematical aspects
of viscous stress relaxation, such as the interplay between discrete and continuous
relaxation spectra depending on the style of density stratification of the viscoelastic
mantle or the effects on the gravity fields of sometimes used simplified treatments
of compressibility. We show how GRACE and GOCE data allow us to invert for
the mass redistribution, inner volume variations, gravity perturbations and surface
deformation affecting areas and volumes larger than those embedding the gouge of
the earthquakes, including the slip distribution over the fault surface. A correct
interpretation of the mass redistribution process for megathrust earthquakes is im-
portant for the understanding of the physics of the ocean and Solid Earth coupling,
causing the tsunami which struck Sumatra and Thailand and the eastern coast of
Japan due to the huge amount of water washed out from the epicentral region as
seen from GRACE data and physical modelling. In the present study we focus on
the physics of the co-seismic and post-seismic gravity changes due to a Mw = 7.0
scenario normal-fault earthquake, comparable to the 1980 Irpinia earthquake. Our
modelling provides the earthquake gravity effects within the perspective of the up-
coming Next Generation Gravity Missions (NGGM), designed to detect the gravity
anomalies caused by earthquake magnitudes as low as Mw = 7 as well as the gravity
anomalies due to the active tectonic processes responsible for the earthquakes. It
is expected that the time-dependent gravity will be exploited at the GOCE spatial
resolution and at GRACE time resolution, or even better, thanks to a new class of
payload instrumentation, based on a laser ranging system measuring the distance
variation between one or two pairs of satellites flying in formation at altitudes of
about 300 km and at about 100 km separation, each satellite differently affected by
the gravity changes of our Planet.
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1. – Introduction

Geophysical processes occurring within the Earth involve both particle displacements
and gravity changes, the latter caused by displacements of interfaces separating material
of different density or by volume changes due to compression or dilatation of the ma-
terial: the joint use of Earth’s mathematical models capable of simulating the physical
processes and of space geodetic data, sampling displacements and gravity changes, allows
nowadays to constrain the physics of the Earth’s interior. This work is devoted to the
exploitation of some issues pertaining to global Earth’s model, some technical details
of which have not received adequate attention in the international literature and to the
presentation of preliminary results on the gravitational effects of earthquakes which the
Next Generation Gravity Missions (NGGM) [1] have the potential to disclose, improving
substantially our knowledge on the physics of the seismic cycle with respect to what
we learnt from GRACE (Gravity Recovery And Climatological Experiment) and GOCE
(Gravity and steady state Ocean Circulation Explorer) space gravity missions. Among
the various processes affecting our Planet, we choose herein to focus on the earthquakes,
since they represent a major aspect of Plate Tectonics, an important aspect of which
stands on the slow but continuous relative motion and deformation of the tectonic plates
ending into abrupt, catastrophic ruptures in the outer shell of the Earth. The earth-
quake is a perfect example of a geophysical process involving both displacements and
gravity changes, because it displaces the crustal material in the near and in the far field
with respect to the fault and produces at the same time changes in the gravity, due
to the displacement of material of varying density and because it causes compression
and dilatation of the Earth’s material, so augmenting and diminishing the density of
the material at different depths. Nowadays, displacements caused by earthquakes at the
Earth’s surface are recorded by GNSS (Global Navigation Satellite System) and SAR
(Synthetic Aperture Radar) while gravity changes are recorded by GRACE, but limited
to magnitudes higher than Mw = 8.5.

In order to tackle self-consistently the modelling of earthquakes of different magni-
tudes, including those as the 2004 Sumatran, Mw = 9.3 or the 2011 Tohoku-Oki ones,
Mw = 9.1, which broke the Earth’s crust with faults whose dimension parallel to the
Earth’s surface is of the order of 102–103 km, we need spherical and self-gravitating
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Earth’s models, whose physics is exploited in sects. 2 and 3: for fault dimensions of
some hundreds kilometres the effects of sphericity are in fact not negligible and, be-
sides, a correct treatment of the central gravity field requires not only a spherical model
but also a self-gravitating one, meaning with this wording that our Earth’s model must
account for the effects of the perturbation of the gravitational field once the Earth is
deformed or masses are displaced within the Earth or at its surface. In the forthcoming
sect. 2 we deal with some detailed aspects of this class of models, as those associated
with compressibility and density stratification, within the framework of spherical, self-
gravitating, stratified and viscoelastic Earth’s models: it should be noted that in their
characterization we added the viscoelasticity, since when dealing with the earthquakes
our modelling must account for the instantaneous elastic deformation plus for the vis-
coelastic effects, due to the fluid-like, viscous behaviour of the deep portions of the Earth.
Furthermore, the model must be stratified, in terms of density, elastic and viscoelastic
parameters, in order to match the in-depth mechanical properties of our Planet, as we
learnt from decades of its seismological exploration and Post Glacial Rebound studies.
Section 4 is devoted to the presentation of the new technology, based on laser track-
ing between satellites, opening new perspectives in the detection of the gravity changes
with high accuracy in time and at high spatial resolution. Sections 5 and 6 are devoted
to the analysis of the gravitational effects of earthquakes of different magnitudes, from
magnitude Mw = 7 to magnitude Mw = 9, and normal fault or thrust earthquakes, the
former caused by the extension of the crust, as for the case of the Mw = 6–7 earth-
quakes in the Apennines and the latter caused by the compression of the plates, as for
the case of the giant, around Mw = 9, Sumatran and Tohoku-Oki earthquakes. The
gravitational effects will be exploited in terms of their amplitude variations, in micro-
Gal (μGal) for the gravity and in terms of their characteristic wavelength of the gravity
signal.

2. – Spherical, self-gravitating, viscoelastic, compressible Earth’s models

The mathematics described in sects. 2-3, based on [2], displays the response of a
spherical, self-gravitating and compressible Earth model to external forces and loads
seated at its surface or at its interior, as well as to earthquake faults, the topic of this
work. Readers willing to catch all the technical details of viscoelastic relaxation theory
may refer to chapters 1 and 2 of [2]: we discuss herein some basic physics of the mo-
mentum and Poisson equations, relevant in viscoelasticity, skipping all the steps leading
to the viscoelastic solution of the system of linear differential equations obtained by ex-
panding in spherical coordinates the momentum and Poisson equations, whose solution
is discussed in terms of the structure of our Planet, depending on its mechanical, density
and rheological stratification.

As stated in the Introduction, we are interested in both co-seismic and post-seismic
gravity signals from earthquakes, which means that we have to choose the rheological
law relating stress to strain and strain rate and thus describing how the Earth’s material
reacts to applied stresses, instantaneously or elastically when dealing with co-seismic
gravity signals, or over time, when dealing with post-seismic signals; we will not deal
with non-linear rheological laws or finite-strain theory, since for a wide spectrum of
Solid Earth relaxation processes, such as co- and post-seismic deformations, both can be
neglected.
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2.1. Viscoelastic rheology and correspondence principle. – The simplest viscoelastic
model describing the Earth as an elastic body for short time scales and as a viscous fluid
for time scales characteristic of post-seismic deformation, the focus of the present work
aimed at detecting this seismic phase via gravity anomalies from space missions, is the
linear Maxwell solid, whose one-dimensional mechanical analog is given by a spring and
a dashpot, depending, respectively, on the rigidity μ and on the viscosity ν. The speed
for shear wave propagation depends on the square root of the instantaneous rigidity
μ, as well as the co-seismic deformation and co-seismic gravity changes depend on the
rigidity, whereas the strength of post-seismic deformation rates and post-seismic gravity
rate of change depend on the magnitude of the steady-state viscosity ν. Rigidities and
viscosities are obtained, respectively, from seismology and from Post Glacial Rebound or
post-seismic deformation studies.

We assume linear and isotropic constitutive equations, relating stress and strain;
perturbations are isentropic and isochemical because viscoelastic relaxation processes, as
co- and post-seismic ones, occur on time scales shorter than those characterizing heat
diffusion and changes in the chemical composition of the rocks. The Maxwell rheology
is defined by the following constitutive equations:

(1) σδ = κ Δ1 + 2 q � ∂tεD,

where σδ denotes the incremental Cauchy stress tensor and εD denotes the deviatoric
strain tensor; ∂t and � stand for the partial derivative with respect to time t and for the
time convolution

(2) (q � ∂tεD) (t) =
∫ t

0

q(t − t′) ∂t′εD(t′) dt′,

where κ, q and εD are the adiabatic bulk modulus, the shear relaxation function and the
deviatoric strain tensor

(3) εD = ε − Δ
3

1.

In this respect, the first and second terms on the RHS of eq. (1) describe the isotropic
and deviatoric material incremental stresses, with the divergence Δ = ∇ · u, where u
denotes the displacement of the particle; the factor κ Δ multiplying the identity matrix
1 corresponds to the negative of the material incremental pressure

(4) pδ = −κ Δ,

as shown by comparison of eq. (1) and eq. (34).
For the Maxwell solid, the shear relaxation function takes the following form:

(5) q(t) =

⎧⎪⎨
⎪⎩

μ exp
(
− t

τ

)
, t ≥ 0,

0, t < 0,
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where τ is the Maxwell time defined by the ratio between the viscosity ν and the shear
modulus μ

(6) τ =
ν

μ
.

The shear modulus values as a function of depth are well constrained from seismology
and wave propagation, while the viscosity values are subject to uncertainties, for the
obvious reason that, while for the shear modulus we can rely on a large number of
seismological data from earthquakes, for viscosity estimates we must rely on Post Glacial
Rebound or post-seismic deformation studies, the former representing a single event for
our Planet, which ended about 7 × 103 yr ago, and the latter representing events which
started to be studied recently, as we show hereinafter, and still requiring good quality
data, as in fact the next generation gravity mission is expected to provide. In any
case, Post Glacial Rebound studies constrain the upper mantle viscosity in the range
0.5 × 1020–1021 Pa s, the lower mantle viscosity in the range 1022–1023 Pa s and post-
seismic studies indicate asthenospheric or intra-crustal viscosities in the range 0.5 ×
1018–1019 Pa s. The shear modulus range is 1010–1011 Pa for our Planet: from these
values for the viscosity and for the shear modulus, it is possible to estimate the Maxwell
times for the Maxwell rheology. We should point out that, while the Maxwell time
characterizes the rheological law, it is necessary to solve the coupled momentum and
Poisson equations as described in the following in order to quantify the characteristic
relaxation times, associated to the modes triggered by the surface and internal density
and mechanical discontinuities, which determine the evolution in time of the Earth and
of its internal portions once perturbed by any kind of forcing.

The Maxwell rheology describes the transition from the elastic to the Newtonian
fluid behaviour of the Earth occurring on the time scale given by the Maxwell time τ .
Although the constitutive equations of both elastic and Newtonian fluid bodies relate
stress at a given time to only strain and strain rate at that time, eqs. (1) and (2) show
that for the Maxwell rheology the viscoelastic stress at a given time depends on the whole
strain rate history before that time, as shown by the convolution above.

The Maxwell rheology does not account for bulk relaxation because we assume that
the adiabatic bulk modulus κ is constant, which is consistent with reality. The bulk mod-
ulus is defined starting from the differential form of the density state function ρ(p, s, c)
that describes the density of a particle as function of its pressure p, entropy s and chem-
ical composition c,

(7) dρ =
∂ρ

∂p

∣∣∣∣
s,c

dp +
∂ρ

∂s

∣∣∣∣
p,c

ds +
∂ρ

∂c

∣∣∣∣
p,s

dc.

We choose the entropy as thermodynamic quantity rather than the temperature since
we consider isentropic perturbations. The differentials dρ, dp, ds and dc denote the
perturbations with respect to the initial state of the particle, and they correspond to the
material incremental fields ρδ, pδ, sδ and cδ.

Within the assumption of isentropic and isochemical perturbations, or sδ = 0 and
cδ = 0, we obtain

(8) ρδ =
∂ρ

∂p

∣∣∣∣
s0,c0

pδ,
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where the subscript 0 denotes the initial fields. By making use of the material incremental
density ρδ = −ρ0 Δ (see also eq. (43)) and of eq. (4) into eq. (8), we obtain the definition
of the adiabatic bulk modulus κ entering the constitutive equation (1) in terms of the
partial derivative of the density with respect to the pressure in the initial state

(9)
ρ0

κ
=

∂ρ

∂p

∣∣∣∣
s0,c0

.

A powerful tool for solving transient problems of linear viscoelasticity is the Corre-
spondence Principle, based on the result that the viscoelastic problem in the Laplace
domain is formally identical to the elastic problem in the time domain, as shown here-
inafter.

The Laplace transform of a function f(t) is formally defined as

(10) L[f ] =
∫ ∞

0

f(t)e−stdt,

with L, t and s being the Laplace transform operator, time and Laplace variable (which
has dimension of inverse time). Introducing f̃(s) = L[f ], it is straightforward to show
that the Laplace transform of the time derivative of the function f(t) yields

(11) L[∂tf ] = s f̃(s) − f(0)

and that the Laplace transform of the time convolution of two functions f(t) and h(t)
yields the product of the Laplace transforms f̃(s) and h̃(s)

(12) L[f � h] = f̃(s) h̃(s),

with � denoting the time convolution operator.
In the following mathematical developments we will consider the most general exter-

nal forcing, surface or internal loading and earthquakes that act on the Earth starting
immediately after the initial time, namely at t = 0+, and we restrict our attention on
right-handed functions that differ from zero only for t > 0

(13) f+(t) = f(t)H(t − 0+).

Here H(t) is the Heaviside function.
The Laplace transform of the right-handed function f+(t) is the same as the original

function f(t)

(14) f̃+(s) = f̃(s),

while the Laplace transform of its derivative yields

(15) L[∂tf+(t)] = s f̃(s),

because the second term on the RHS of eq. (11) disappears due to the step-like discon-
tinuity of f+(t) at t = 0+. From now on, we intend time-dependent functions describing
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forcings and perturbations as right-handed functions, even though the subscript + will
be omitted.

By making use of eq. (15), the Laplace transform of the constitutive equation for the
Maxwell solid, eq. (1), yields

(16) σ̃δ(s) = κ Δ̃(s)1 + 2 μ̂(s) ε̃D(s),

with μ̂(s) being the following function of the Laplace variable s:

(17) μ̂(s) =
μ s

s + 1
τ

.

Note that eq. (16) has the same form as Hooke’s law for linear elastic solids

(18) σδ = κ Δ1 + 2μ εD,

where μ̂(s) and the Laplace transforms of the fields are replaced by the shear modulus
μ and the same fields in the time domain; we can thus derive the equations for vis-
coelastic bodies in the Laplace domain from elastic body equations. Particularly, after
Laplace transformation, the momentum and Poisson equations for the viscoelastic body
are formally equivalent to those for the elastic solid. We thus solve the equivalent elastic
problem in the Laplace domain and, only at the last stage, we will perform the inverse
Laplace transform of the solution to obtain the viscoelastic solution in the time domain.
In this respect, we will also refer to the viscoelastic solution in the Laplace domain as
the associated elastic solution.

The so-called Correspondence Principle states that the time-dependent viscoelastic
solution of the momentum and Poisson equations can be found in a unique way from
the inverse Laplace transformation of the associated elastic solution. In light of this
analogy between the elastic and viscoelastic problems, afterwards we will omit the tilde
to denote Laplace transforms and we do not distinguish between the shear modulus μ and
the function μ̂(s), eq. (17). In this respect, the following results can be seen both as the
solution of the elastic static problem and the associated elastic solution for viscoelasticity.

2.2. Momentum and Poisson equations. – For long time scale processes the inertial
forces vanish and the conservation of linear momentum requires that the body force F
per unit volume acting on the infinitesimal element of the continuum body is balanced
by the stress acting on the surface of the element. At any time t, we have for the Cauchy
stress tensor σ acting on the infinitesimal element

(19) ∇ · σ + F = 0,

describing the momentum equation to be solved within the whole volume of the Earth.
The body force F accounts for the gravitation generated by the Earth, for internal

and surface loads, and for external bodies responsible for tidal forces. It accounts also
for all kinds of other contributions like centrifugal and seismic forces. We decompose the
body force F into a non-conservative force M representing the equivalent body force for
shear dislocations and a conservative force in terms of the gradient of the potential φ

(20) F = M −
(
ρ + ρL

)
∇φ,
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where ρ and ρL are the densities of the Earth and loads, and the potential φ consists of
the gravitational potentials of the Earth, φE , loads, φL, tidal, φT , and centrifugal, φC .
Each term in these equations has the dimension of N/m3, or force per unitary volume,

(21) φ = φE + φL + φT + φC .

The gravitational potentials φE and φL are due to the density of the Earth ρ and loads
ρL, while the tidal potential is due to the density of external bodies ρT . They satisfy the
following Poisson equations:

∇2φE = 4π Gρ,(22)

∇2φL = 4π GρL,(23)

∇2φT = 4π GρT ,(24)

where G is the universal gravitational constant. Note that the density ρT of external
bodies, responsible for the tidal potential φT , does not enter the momentum equation (19)
via eq. (20) because, by definition, external bodies do not load the Earth, i.e., the balance
of forces acting on external bodies does not involve surface forces from the Earth. The
centrifugal potential φC due to the Earth’s rotation is defined as

(25) φC =
1
2

[
(ω · r)2 − ω2 r2

]
,

where ω and r are the angular velocity of the Earth and the position vector, and ω = |ω|
and r = |r| are the rotation rate and the radial distance from the Earth’s centre.

The potential φ solves the Poisson equation

(26) ∇2φ = 4π G
(
ρ + ρL + ρT

)
− 2ω2,

where the latter term on the right-hand side (RHS) results from the Laplacian of the
centrifugal potential ∇2φC = −2ω2. Differently from the momentum equation (19),
solved only within the volume of the Earth, the Poisson equation (26) is solved also
outside the Earth.

Within the Lagrangian approach, the deformed Earth is described in terms of dis-
placements of the particles of the continuum body,

(27) r = x + u(x, t),

where t is the time, and x and r denote the initial and current positions of the particle
subjected to the displacement u. Following [3], we introduce the decomposition of scalar,
vector and tensor fields into initial fields, (i.e., the fields at the initial time), and local
and material incremental fields,

f(r, t) = f0(r) + fΔ(r, t),(28)
f(r, t) = f0(x) + fδ(x, t),(29)

where f stands for the generic field. The initial field f0 is denoted by the subscript 0
and describes the initial state of the undeformed Earth. The local incremental field fΔ
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is denoted by the superscript Δ and represents the increment of the field at point r with
respect to the initial field at the same position r. The material incremental field fδ is
denoted by the superscript δ and represents the increment of the field at point r with
respect to the initial field at point x, denoting the initial position of the particle currently
located at r, eq. (27).

Local and material incremental fields differ for the so-called advective incremental
field, which is the difference between the initial field evaluated at the current and at the
initial positions of the particle. Within the assumption of infinitesimal deformations, this
difference is a first-order term that cannot be neglected,

(30) fδ = fΔ + u · ∇f0.

This relation holds both in the Lagrangian and Eulerian formulations, where the incre-
mental fields are functions of the initial and current positions of the particle, because
differences among incremental fields are of the second order and can be neglected.

Because the undeformed Earth is in non-rotating hydrostatic equilibrium, the initial
potential φ0 is the gravitational potential due to the initial density ρ0 representing the
density of the undeformed Earth, and satisfies the Poisson equation

(31) ∇2φ0 = 4π Gρ0.

The initial Cauchy stress tensor σ0 is the initial hydrostatic stress

(32) σ0 = −p0 1,

where 1 and p0 are the identity matrix and the initial hydrostatic pressure, entering with
the minus sign according to the convention that stress is positive when it acts in the
same direction as the outward normal to the surface. From the momentum equation at
the initial time, the condition of non-rotating hydrostatic equilibrium is expressed as

(33) −∇p0 − ρ0 ∇φ0 = 0.

In the following, perturbations of the Cauchy stress tensor σ are expressed in terms
of the material increment

(34) σ(r, t) = −p0(x)1 + σδ(x, t),

where the constitutive equations of elastic and viscoelastic materials hold and are ex-
pressed as functions of strain and strain rate. The natural choice for perturbations of
the total potential φ and the of density of the Earth ρ are the local increments

φ(r, t) = φ0(r) + φΔ(r, t),(35)
ρ(r, t) = ρ0(r) + ρΔ(r, t).(36)

Then, in view of eqs. (31) and (33) and after substitution of eqs. (20) and (34)–(36) into
eqs. (19) and (26), we obtain the incremental momentum and Poisson equations

∇ · σδ + ∇ (u · ∇p0) − ρΔ ∇φ0 − ρ0 ∇φΔ − ρL ∇φ0 + M = 0,(37)
∇2φΔ = 4π G

(
ρΔ + ρL + ρT

)
− 2ω2,(38)
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where only first-order terms enter. The first term in eq. (37) describes the contribution
from the material incremental stress and the second term accounts for the advection of
the initial hydrostatic pressure

(39) p0(r) = p0(x) + u(x, t) · ∇p0(x)

when eq. (33) is applied at r

(40) −∇p0(r) − ρ0(r)∇φ0(r) = 0.

The third term describes the buoyancy forces due to density changes, or compressibility,
the fourth term describes the gravity perturbations, or self-gravitation, due to any kind of
forcing, and the fifth and sixth terms account for the weight of loads and non-conservative
forces: it is clear that the third and fourth terms play a major role in this study devoted
to the effects of earthquakes on the gravity field and on compression or dilatation of the
Earth’s material.

For self-gravitating Earth models, the local incremental potential φΔ must be obtained
self-consistently together with the local incremental density ρΔ. This is accomplished by
the coupling of the momentum and Poisson equations, eqs. (37), (38), via the continuity
equation of mass written as

(41) ρΔ = −∇ · (ρ0 u) = −ρ0 Δ − u · ∇ρ0.

The first term on the RHS describes the density perturbation due to the volume variation
Δ of the particle

(42) Δ = ∇ · u

and the second term describes the advection of the initial density field. In this respect,
the first term on the RHS of eq. (41) is the material incremental density ρδ

(43) ρδ = −ρ0 Δ.

2.3. Compressible and incompressible Earth’s models. – By definition, there are no
volume changes Δ within incompressible materials. They occur instead within com-
pressible materials, responsible for differences both in the style of deformation and in the
interpretation of density stratifications at the initial state of hydrostatic equilibrium.

During the deformation, incompressible materials react to isotropic stresses. From
eq. (4), we require for incompressible materials that the bulk modulus κ is infinitely
large in order that the incremental pressure pδ remains finite in the limit of Δ going to
zero and of κ going to infinity

(44) pδ = lim
Δ→0 κ→∞

(−κ Δ) .

In this respect, the bulk modulus is sometimes called modulus of incompressibility. On
the contrary, compressible materials are characterized by a finite bulk modulus.

Incompressible and compressible Earth models also differ in their initial state of hy-
drostatic equilibrium, once the compression of the Earth due to its own weight, or self-
compression, is included self-consistently. To better understand this issue, let us consider
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the initial density ρ0 = ρ(p0, s0, c0) as a function of the initial pressure p0, entropy s0

and chemical composition c0 and take its gradient

(45) ∇ρ0 =
∂ρ0

∂p

∣∣∣∣
s0,c0

∇p0 +
∂ρ0

∂s

∣∣∣∣
p0,c0

∇s0 +
∂ρ0

∂c

∣∣∣∣
p0,s0

∇c0.

Let us also assume that the Earth model is spherically symmetric, an assumption that we
adopt in our modelling. The initial density, entropy and chemical composition depend
only on the radial distance from the Earth centre r leading to

(46) ∇ρ0 = ∂rρ0 er, ∇s0 = ∂rs0 er, ∇c0 = ∂rc0 er

and, from the condition of hydrostatic equilibrium, eq. (33), the gradient of the initial
pressure yields

(47) ∇p0 = −ρ0 ∇φ0 = −ρ0 g er,

where er and g are the unit vector pointing outward the Earth’s centre and the gravity
acceleration for a spherically symmetric Earth

(48) g(r) =
4π G

r2

∫ r

0

ρ0(r′) r′2 dr′.

Equation (45) can be arranged as follows:

(49) ∂rρ0 = −ρ2
0 g

κ
+ γ,

where γ is the compositional coefficient given by

(50) γ =
∂ρ

∂s

∣∣∣∣
p0,c0

∂rs0 +
∂ρ

∂c

∣∣∣∣
p0,s0

∂rc0.

Equation (49) is named the generalized Williamson-Adams equation [4, 5]. The first
term on the RHS shows how compressibility, via the bulk modulus κ, defines the initial
density profile of the Earth. A finite bulk modulus yields a negative density gradient
∂rρ0 and the initial density increases with depth according to the compression of the
Earth due to its own weight, or self-compression. The second term, the compositional
coefficient γ, takes into account the departure from the self-compression due to non-
adiabatic and chemically heterogeneous stratifications, when the gradient of the initial
entropy, ∂rs0, and chemical composition, ∂rc0, differ from zero. Their contribution is at
most 10–20 per cent of the actual density gradient of the Earth [6,5] and it likely occurs
in the outermost layers of the Earth, like the transition zone and the lithosphere. The
core and the lower mantle, instead, deviate marginally from the adiabatic and chemically
homogeneous stratification.

If the stratification is adiabatic and chemically homogeneous we have γ = 0, which
means that the stratification is compressional or in a neutral state of equilibrium. If the
stratification is non-adiabatic and chemically heterogeneous we have γ �= 0 and is named
compositional stratification.
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2.4. Expansion in spherical harmonics. – We consider spherically symmetric Earth’s
models composed of several concentric layers as the core, the lower and upper mantle
and the lithosphere. Within each layer the material parameters, consisting of the initial
density ρ0, of the bulk modulus κ, of the shear modulus μ and of the viscosity ν, are
continuous functions of only the radial distance from the Earth’s centre r. At the internal
boundaries separating two layers, these parameters may have step-like discontinuities due
to the specific chemical compositions and phases of the rock of each layer.

The most widely used spherically symmetric Earth’s model is the Preliminary Refer-
ence Earth Model (PREM) [7] that specifies the material parameters of the main layers
of the Earth in terms of polynomials of the radial distance from the Earth’s centre r. It
thus accounts for the continuous variations of the material parameters and for the discon-
tinuities at the interfaces between the layers. Concerning the rheology, we will consider
models with a fluid core, a viscoelastic mantle and an elastic lithosphere of about 50 km,
in order to evaluate the contribution arising from post-seismic deformation to the gravity
anomaly caused by a Mw = 7 scenario normal faulting earthquake.

The spherical symmetry of the Earth’s model allows to simplify the incremental mo-
mentum and Poisson equations and to discuss fundamental aspects of the style of defor-
mation. We thus consider the spherical reference frame and we denote with r, θ and ϕ
the radial distance from the Earth’s centre, the colatitude and the longitude, and with
er, eθ and eϕ the respective unit vectors. Due to the spherical symmetry, the homo-
geneous differential equations in spheroidal coordinates depend only on the harmonic
degree � and not on the order m, once expanded in spherical harmonics: the dependence
on the order m is a consequence of the forcing terms representing the body force equiva-
lents to the dislocation or of the asymmetry of the surface or internal load geographical
distribution.

Since the spherical harmonics are eigenfunctions of the angular part of the Lapla-
cian operator in spherical coordinates, it is useful to recall herein the expression of the
Laplacian operator in spherical coordinates

(51) ∇2 =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
.

In view of the spherical symmetry, the initial density, potential and pressure depend
only on the radial distance from the Earth’s centre r and their gradients have no angular
components, as already shown in eqs. (46), (47). The incremental momentum and Poisson
equations (37), (38) become

∇ · σδ − ρ0 ∇ (g u · er) + ρ0 Δ g er − ρ0 ∇φΔ − ρL g er + M = 0,(52)

∇2φΔ = −4π G (ρ0 Δ + ∂rρ0 u · er) + 4π G
(
ρL + ρT

)
− 2ω2.(53)

We also introduce the spherical harmonic expansions of the potential φ and the de-
composition of the displacement u into spheroidal, uS , and toroidal, uT , displacements

φΔ(r, θ, ϕ) =
∞∑

�=0

�∑
m=−�

Φ�m(r)Y�m(θ, ϕ),(54)

u = uS + uT ,(55)
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with

uS(r) =
∞∑

�=0

�∑
m=−�

[U�m(r)R�m(θ, φ) + V�m(r)S�m(θ, φ)] ,(56)

uT (r) =
∞∑

�=0

�∑
m=−�

W�m(r)T�m(θ, φ),(57)

Y�m denote the spherical harmonics of degree � = 0, · · · ,∞ and order m = −�, · · · , �,
and R�m, S�m and T�m are the spherical harmonic vectors defined by

R�m = Y�m er,(58)

S�m = r ∇Y�m = ∂θY�m eθ +
∂ϕY�m

sin θ
eϕ,(59)

T�m = ∇ × (r Y�m) =
∂ϕY�m

sin θ
eθ − ∂θY�m eϕ,(60)

where r = r er is the position vector. The scalars Φ�m, U�m, V�m and W�m are the
spherical harmonic coefficients and we refer to them as the potential, the radial and tan-
gential spheroidal displacements, and the toroidal displacement. Note that the spherical
harmonic vectors S00 and T00 yield zero, indicating that the tangential spheroidal and
toroidal displacements of harmonic degree � = 0 do not contribute to deformations. We
then set the respective spherical harmonic coefficients to zero, V00 = W00 = 0.

These equations show that the spheroidal and toroidal fields are decoupled and can
thus be studied separately. Further details about spherical harmonics and spherical
harmonics vectors are discussed in [8]. Here we only explicit the definition of spherical
harmonics

(61) Y�m(θ, ϕ) = P�m(cos θ) ei m ϕ,

where P�m are the associated Legendre polynomials. The latter, for m ≥ 0, are given by

(62) P�m(x) =
1

2� �!
(
1 − x2

)m/2 d�+m(x2 − 1)�

dx�+m

and, for m < 0,

(63) P�−m(x) = (−1)m (� − m)!
(� + m)!

P�m(x).

The spherical harmonics are eigenfunctions of the angular part of the Laplacian operator
in spherical coordinates, eq. (51), so that

(64) ∇2Y�m =
1
r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
Y�m = −�(� + 1)

r2
Y�m.

Spherical harmonics are normalized in this work according to

(65)
∫

Ω

Y�mY ∗
�′m′dΩ = N�mδ�l′δmm′ ,
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where N�m denotes the normalization factor,

(66) N�m =
4π

2 � + 1
(� + m)!
(� − m)!

,

which is the same normalization scheme adopted in [2].

2.5. Volume changes and surface forces. – After substitution of eqs. (55)–(57)
into (42), we obtain the spherical harmonic expansion of the volume change Δ

(67) Δ = ∇ · u =
∞∑

�=0

�∑
m=−�

χ�m Y�m,

where the scalar χ�m is given by

(68) χ�m = ∂rU�m +
2
r

U�m − � (� + 1)
r

V�m.

It is noteworthy that the toroidal displacement does not contribute to volume changes,
i.e., ∇ · uT = 0. Furthermore, because the toroidal displacement has no component
along er, it does not contribute to the advection of the initial density field of the Earth’s
models, which can be only radial, as shown by eq. (46). This means that the local
incremental density is only due to spheroidal deformations

(69) ρΔ = −ρ0 ∇ · uS − ∂rρ0 uS · er

and that toroidal deformations do not directly contribute to the local incremental grav-
itational potential φΔ.

Let us now consider the spherical harmonic expansion of the material incremental
stress σδ ·er acting on a surface element with outward normal er. From the definition of
the strain tensor and from Hooke’s law, eq. (18) or, equivalently, the consitutive equation
for the Maxwell solid in the Laplace domain, eq. (16), after some straightforward algebra
we obtain

(70) σδ · er = λ Δer + μ [∇ (u · er) − (∇er) · u + (er · ∇) u] ,

where λ is the second Lamé parameter that is expressed in terms of the shear modulus
μ (also known as first Lamé parameter) and the bulk modulus κ

(71) λ = κ − 2
3

μ.

By substituting the spherical harmonic expansions for displacements and volume changes,
eqs. (55)–(57) and (67), we obtain

(72) σδ · er =
∑
�m

(R�m R�m + S�m S�m + T�m T�m) ,
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where the spherical harmonic coefficients R�m, S�m and T�m are given by

R�m = λχ�m + 2μ∂rU�m,(73)

S�m = μ

(
∂rV�m +

U�m − V�m

r

)
,(74)

T�m = μ

(
∂rW�m − W�m

r

)
.(75)

We will refer to R�m and S�m as the radial and tangential spheroidal stresses and to T�m

as the toroidal stress.

2.6. Spheroidal deformations. – The radial and tangential spheroidal components of
the momentum equation and the Poisson equation constitute a system of three differential
equation of the second order in the unknowns U�m, V�m and Φ�m. This differential system
must be solved for each harmonic degree from the centre to the surface of the Earth
where proper boundary conditions uniquely determine the solution. The treatment of
the � = 0 � = 1 harmonic components necessitates a peculiar treatment, of no interest
in the present work, being the modelling of the gravity anomalies from earthquakes
detectable from space gravity missions independent of these � = 0 � = 1 components.
Analytical solutions of these differential equations can be obtained when the Earth’s
material is incompressible. In order to take into account the most realistic Earth’s
material parameters, which require solutions based on numerical techniques for solving
the viscoelastic problem for general spherically symmetric Earth’s models, we cast these
differential equations into the form of six differential equations of the first order that
are suitable for numerical integration in the radial variable r by means of algorithms
like the Runge-Kutta method. We therefore introduce the spheroidal 6-vector solution
y�m

(76) y�m = (U�m, V�m, R�m, S�m, Φ�m, Q�m)T
,

where the first and second components are the radial and tangential displacements, the
third and fourth components the radial and tangential stresses, the fifth component the
potential and the sixth component the so-called “potential stress”. The latter is defined as

(77) Q�m = ∂rΦ�m +
� + 1

r
Φ�m + 4π Gρ0 U�m.

From the radial and tangential spheroidal components of the momentum equation,
from the Poisson equation and the definition of radial, tangential and potential stresses,
eqs. (73)-(74) and (77), after some algebra we obtain the following linear differential
system for the spheroidal vector solution:

(78)
dy�m(r)

dr
= A�(r)y�m(r) − f�m(r),

where A� is the 6×6-matrix depending on the material parameters of the Earth’s model,
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on the radial distance from the Earth centre r and on the harmonic degree �

A�(r) =(79) ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2 λ
r β

�(�+1) λ
r β

1
β 0 0 0

− 1
r

1
r 0 1

μ 0 0

4
r

(
3 κ μ
r β − ρ0 g

)
�(�+1)

r

(
ρ0 g − 6 κ μ

r β

)
− 4 μ

r β
�(�+1)

r −ρ0(�+1)
r ρ0

1
r

(
ρ0 g − 6 μ κ

r β

)
2 μ
r2

[
�(� + 1)

(
1 + λ

β

)
− 1

]
− λ

r β − 3
r

ρ0
r 0

−4π Gρ0 0 0 0 − �+1
r 1

− 4 π G ρ0 (�+1)
r

4 π G ρ0 �(�+1)
r 0 0 0 �−1

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with

(80) β = λ + 2μ.

The non-homogeneous term f�m of the differential system (78) accounts for terms related
to massive bodies other than the Earth and for seismic forces, responsible for the �,m
dependence. In fact, the homogeneous system depends solely on the harmonic degree �
being the Earth’s model spherically symmetric, while the seismic equivalent body forces
are intrinsically non-symmetric, or dependent also on the order m, similar to surface or
internal loads which can introduce the m dependence through their geographical distri-
bution along longitude. The explicit expression of the f�m(r) term is given in sect. 1.10
“Point Sources” of ref. [2], for internal loads and seismic sources.

Similarly to the case of spheroidal deformations, we define the toroidal 2-vector solu-
tion y�m as follows:

(81) y�m = (W�m, T�m)T
,

where the first and second components are the toroidal displacement and stress, respec-
tively. The toroidal component of the momentum equation can be cast into a linear
differential system like eq. (78)

(82)
dy�m(r)

dr
= A�(r)y�m(r) − f�m(r),

where now y�m and A� are the toroidal 2-vector solution (81) and the following 2 × 2-
matrix:

(83) A� =

⎛
⎜⎜⎝

1
r

1
μ

μ(�(� + 1) − 2)
r2

−3
r

⎞
⎟⎟⎠

and the dishomogeneous term f�m accounts for the toroidal components of the seismic
forces.
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The explicit expression of the seismic forcing, relevant for studying the earthquake
effects on the gravity field, can be found in sect. 1.10.2 “Fault discontinuities” of [2],
based on the work of [9, 8], which introduce the m dependence in the solutions of the
spheroidal and toroidal systems of differential equations. From now on, we consider only
the spheroidal part of the solution, since the we are interested in the gravitational effects
of the earthquakes, which depend only on the spheroidal part, since the toroidal part
does not affect the gravity.

2.7. Elastic and viscoelastic solutions. – The general solution of the differential sys-
tem (78) or (82) reads

(84) y�m(r) = Π�(r, r0)y0 −
∫ r

r0

Π�(r, r′)f�m(r′) dr′,

where y0 is the Cauchy datum at the radius r0

(85) y�m(r0) = y0

and Π� is the so-called propagator matrix. The latter is the 6×6-matrix for the spheroidal
case and the 2 × 2-matrix for the toroidal case that solve the following homogeneous
differential system:

(86)
dΠ�(r, r′)

dr
= A�(r)Π�(r, r′),

with the Cauchy datum at the radius r′ given by the identity matrix 1

(87) Π�(r′, r′) = 1.

For the toroidal case, the forcing term is limited to the seismic sources. In this respect,
each column of the propagator matrix is one of the six linearly independent solutions of
the homogeneous differential system

(88)
dy�m

dr
= A� y�m.

When the integration of eq. (86) in a viscoelastic layer of the Earth’s model arrives at an
internal chemical boundary, we impose the continuity of the propagator and we continue
the integration in the new layer according to the continuity of the spheroidal and toroidal
solution vectors at each chemical interface

(89) Π�(r+
j , r′) = Π�(r−j , r′).

In this way the spheroidal and toroidal vector solutions y�m, eq. (84), satisfy the condi-
tions for the chemical boundaries between the viscoelastic layers of the Earth’s model.

We impose CMB (Core Mantle Boundary) conditions in the general solution (84)
by choosing the bottom of the mantle as the radius from which the integration starts,
r0 = r+

C , and equating the Cauchy datum y0 as follows:

(90) y�m(r+
C ) = y0 = IC C,
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where y0 = IC C, with the C vector denoting the three integration constants, is the
solution vector at the outer boundary of the Earth’s core, which is assumed to be an
inviscid fluid, which is appropriate for short-time events like earthquakes as indicated by
the shear waves which do not cross the outer core. The complete treatment of the CMB
conditions can be found in sect. 1.6.3 “Core-mantle boundary” in [2].

This yields

(91) y�m(r) = Π�(r, r+
C )ICC − w(r),

where, for brevity, we have defined

(92) w(r) =
∫ r

r+
C

Π�(r, r′)f�m(r′) dr′,

without the explicit dependence on �, m to not overwhelm the following equations.
The three constants of integration C entering the CMB conditions are estimated

by imposing the boundary conditions at the Earth’s surface related to the radial and
tangential stress and to the gravitational potential stress. From eq. (91) and by recalling
that the spheroidal vector solution refers to the solution just below the Earth’s surface,
we write

(93) P1y�m(a−) = P1

(
Π�(a−, r+

C )ICC − w(a−)
)

= b,

where P1 denotes a projection matrix picking the radial and tangential components of
the stress and the gravitational potential stress from the solution vector, to match at the
Earth’s surface the corresponding values of these quantities provided by the b vector,
which is zero for the toroidal part. The b vector accounts for the boundary conditions
at the Earth’s surface, such as surface density anomalies, tidal and centrifugal potentials
and is explicitly given in sect. 1.6.1 “The Earth’s surface” in [2] in terms of the spherical
harmonic components of these forcings.

Note that w is evaluated at a−, which means that the integration from the bottom
of the mantle entering eq. (92) ends just below the Earth’s surface, a−. This means that
surface loadings do not contribute to the integral since their effect is already accounted
for by the Earth’s surface boundary condition via the b term. In other words, the vector
solution must be intended as evaluated below the Earth surface a because it refers to
perturbations of the Earth, and only the density of internal loads and seismic forces
contribute to the vector w. The dishomogeneous term f�m does not thus include those
terms that are zero within the Earth, i.e., the surface density σL

�m and the density of
external bodies ρT

�m

(94) f�m = ρI
�m fL + m�m,

where the superscript I for internal loads is used rather than the more general L; the
toroidal case is limited to the solely seismic term denoted by the second term on the
RHS.

Then, using eq. (93) for obtaining the constants of integration C

(95) C = (P1 Π�(a, rC) IC)−1 (P1 w(a) + b)
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where now the minus sign is omitted in a− and the plus sign is omitted in r+
C , eq. (91)

becomes

(96) y�m(r) = Π�(r, rC)IC (P1 Π�(a, rC) IC)−1 (P1 w(a) + b) − w(r).

This is the solution of the associated elastic problem that uniquely determines the
spheroidal deformations and the perturbations of the potential within the Earth, as
well as the radial and tangential spheroidal stresses and the potential stress, in response
to internal and surface loading, and tidal, centrifugal and seismic forcings. It is notable
that, although the propagator or the solution of the homogeneous differential equation
system depends solely on the harmonic degree �, the non-homogeneous forcing term, in
our case associated to the seismic forcing, depends also on the order m: it is clear that in
order to “see” in the gravity field the gravity signal from earthquakes, we need a gravity
probe which has the capability to scan from space the whole Earth along latitude and
longitude. In the following sect. 4 we show that we have nowadays at disposal such a
breakthrough instrumentation, to be mounted on board of the incoming NGGM missions.

3. – The relaxation spectrum

Within the perspective of applications of the present theory to the modeling of geode-
tic observations, we consider the solution, denoted by K, for the radial and tangential
spheroidal displacements and local incremental potential at the Earth’s surface

(97) K�m(a) =

⎛
⎜⎝

U�m(a)
V�m(a)
Φ�m(a)

⎞
⎟⎠ .

From eq. (96) we obtain

(98) K�m(a) = P2 y�m(a) = B�(a) (P1 w(a) + b) − P2 w(a),

where P2 is the projector for the first, second and fifth components of the spheroidal
vector solution and, for brevity, we have defined

(99) B�(r) = P2Π�(r, rC)IC (P1 Π�(a, rC) IC)−1
.

When we integrate along the Bromwich contour in order to apply the Correspondence
Principle and to obtain the viscoelastic solution by anti-transforming from the Laplace
domain to the time domain the B�(r) matrix, we have to deal with the singularities of
the propagator Π�(r, rC) and of the inverse of the matrix P1 Π�(a, rC) IC arising from
different sources, within the complex closed contour in the Laplace domain.

The first source of singularities arises when the differential system (86) is non-
uniformly Lipschitzian, not satisfying the Lipschitz condition

(100) |f(r) − f(r,)| ≤ K |r − r,| , ∀ (r, r,) ∈ [rC , a],

where K a positive constant, due to the singularities of the propagator matrix Π�:
inspection of the function μ̂(s) and of the elements of the matrix A�, defined in eqs. (17)
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and (79), leads to the conclusion that the differential system is not uniformly Lipschitzian
for s = 0, s = −τ−1 and s = −ς−1, where ς is the so-called compressional transient
time [10,4] defined as

(101) ς = τ

(
1 +

4μ

3κ

)
,

which makes singular some elements of the A� matrix given by eq. (79), being responsible
for β = 0 in eq. (80) once μ̂(s), eq. (17), is considered.

We denote the set of non-uniformly Lipschitzian zones as N

(102) N = {0} ∪ Nτ ∪Nς ,

with

Nτ =
{

s ∈ R

∣∣∣∣ s = − 1
τ(r)

∀ r ∈ [rC , a]
}

,(103)

Nς =
{

s ∈ R

∣∣∣∣ s = − 1
ς(r)

∀ r ∈ [rC , a]
}

.(104)

This singularity at the origin of the Laplace domain occurs because μ̂(s = 0) = 0 and
the momentum equation becomes the equation for the inviscid body. This demands a
specific treatment, like that for the inviscid core. Cambiotti and Sabadini [4] show that
the origin of the Laplace domain is not a singularity if the stratification of the mantle is
compressional (γ = 0), while it is the cluster point of a infinite denumerable set of roots
if the stratification is compositional (γ �= 0).

The second source of singularities comes from the constants of integration C using
the boundary conditions at the Earth’s surface, eq. (95). Indeed, the inverse of the 3×3-
matrix [P1Π�(a, r) IC ]μ=μ̂(s) may be singular for some value of the Laplace variable s.
In this respect, we recast the matrix B� as follows:

(105) B�(r)|μ=μ̂(s) =
(P2Π�(r, rC) IC) (P1Π�(a, rC) IC)†|μ=μ̂(s)

D(s)
,

where † stands for the matrix of the complementary minors, and D(s) is the so-called
secular determinant

(106) D(s) = det (P1Π�(a, r) IC) |μ=μ̂(s).

The singularities thus occur for the solutions of the so-called secular equation

(107) D(s) = 0,

when the secular determinant entering the denominator of eq. (105) is zero. As proved
by [11] these solutions must be on the real axis of the Laplace domain, i.e., 
s = 0. We
denote the set of these singularities as S

(108) S = {s ∈ R | D(s) = 0} .
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Experience and analytical proofs have led to the conclusion that the solution sj of the
secular equation (107) are finite or, at most infinite denumerable (they may have cluster
points belonging to the non-uniformly Lipschitzian zone N ). Furthermore, they are first-
order roots and, in this respect, the solution vector in the Laplace domain has first-order
poles at these roots. This is the simplest type of singularity we deal with by means of
the residue theorem, obtaining esj t exponentials in the time domain. Particularly, each
root sj contributes to the complex integration along the closed contour Γ for the Green
function k(s) entering the definition of the K�m(a) matrix as detailed in [2]

(109)
1

2πi

∮
Γj

k(s) es tds = kj esj t,

where sj and Γj denote the j-th first-order pole and the closed path containing only this
root, and kj is the residue

(110) kj = lim
s→sj

(s − sj)k(s)

on the basis of the residue theorem.
This shows that each root sj is associated with a response of the viscoelastic Earth’s

model due to the imposition of any kind of forcing or external potentials, as the tidal
or centrifugal ones. These responses are called normal modes and have characteristic
relaxation times tj given by the inverse of the root sj . They describe the transition from
the elastic to the fluid behaviour due to viscoelastic relaxation of deviatoric stress. The
roots sj depend generally on the material parameters of all the layers of the viscoelastic
Earth model and on the harmonic degree � (and thus must be determined for each har-
monic degree). The roots sj are negative but density inversion at the internal interfaces
between the layers of the model, when the density of the layers is lower than that of the
neighboring layer above [12, 13], and unstable compositional stratifications, for positive
compositional coefficients γ > 0 [10,4], trigger positive normal mode roots sj . According
to eq. (109), these positive roots are responsible for the divergence of the displacements
and of the potential at large time scales, called Rayleigh-Taylor instabilities. If that is
the case, unstable convective motions will be triggered in the Earth’s model and the
theory as developed in [2] breaks down on time scales comparable with the characteristic
relaxation time of Rayleigh-Taylor instabilities, tj = −/sj .

For simple layered incompressible models, the total number of normal modes is finite
and can be determined by means of the following rules:

– At each boundary between two viscoelastic layers, one buoyancy mode is triggered if
the densities on both sides of the boundary are different. Buoyancy modes between
two mantle layers are labelled Mi, with i = 1, 2, · · · . At the same boundary, two
additional relaxation modes are triggered if the Maxwell times of both sides of the
boundary are different. These paired modes are called transient viscoelastic modes
as they have relatively short relaxation times and therefore labelled Ti+ and Ti−,
with i = 1, 2, · · · .

– If one side of the boundary is elastic and the other is viscoelastic, as the interface
between the elastic lithosphere and the viscoelastic mantle, one buoyancy mode
and one transient viscoelastic mode are triggered, labelled M0 and L0 in this case
of the lithosphere, the first due to the density contrast between the atmosphere
and the viscoelastic mantle beneath the lithosphere.
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– If the lithosphere is viscoelastic or we consider the viscoelastic upper mantle as the
outermost layer, the viscoelastic Earth’s surface contributes with a buoyancy mode
that is also labelled M0, similarly to the viscoelastic mode M0 triggered at the
interface between the elastic lithosphere and the viscoelastic mantle.

– The core-mantle boundary contributes with one buoyancy mode, labelled C0.

In order to gain insights into the physics of the relaxation processes, it is important to
take a close look at the relaxation times corresponding to the modes excited by disconti-
nuities in the physical parameters of simple Earth’s models, such as the incompressible
one described herein in table I in terms of the density, rigidity and of the depth of the
major layers building our planet, and verify that the number of modes matches the rules
stated above.

We will consider the spheroidal case, contributing to the perturbation in the grav-
ity from earthquakes or from any other source. Building the propagator and de-
riving the normalized secular determinant D(s) entering eq. (102), fig. 1 portrays
f(D�(s)) = sgn(D�(s)) × log10(|D�(s)|) if |D(s)| > 10.0 and f(D�(s)) = D�(s)/10.0 if
|D�(s)| ≤ 10.0 as function of log10(−1/(s×kyr)), which means that s, negative, expressed
in 1/sec is normalized by 1 kyr = 3.153×1010 sec, for the harmonic degrees � = 2, 10 and
100, from top to bottom and for the 5-layer, incompressible Earth’s model displayed in
table I. The zero crossings are the relaxation times corresponding to the normal modes
Ti = −1/si of the 5-layer Earth’s model. Figure 1 portrays 9 zero crossings, or normal
modes of the secular determinant D(s) as expected for the five-layer model of table I:
four transient modes T1–T4 are triggered at the two interfaces between the viscoelastic
layers, at 5951 and 5701 km, because their Maxwell times are different (from table I); two
buoyancy modes, M1 and M2 are triggered at these two interfaces between viscoelastic
layers, M1 at 5701 and M2 at 5951 km; the density contrast between the viscoelas-
tic mantle and the atmosphere triggers the mantle mode M0, the rheological contrast
between the viscoelastic mantle and the elastic lithosphere triggers L0 and finally the
density contrast between the mantle and the core triggers the core mode C0, giving a
final total count of nine modes. The slowest modes have been named M1 and M2 and
are associated with the two internal chemical boundaries at 670 and 420 km. These M1
and M2 modes are important when dealing with the geophysical processes affected by
the slow readjustment of internal density discontinuities, as for the post-seismic phase.

The longest Ti correspond to the buoyancy M2 and M1 modes in the extreme right

Table I. – Parameters for the 5-layer fixed-boundary contrast Earth model. r is the distance
with respect to the centre of the Earth, ρ the density of the layer, and μ the rigidity.

Layer r (km) ρ (kg/m3) ν (Pa s) μ (N/m2)

1 6371–6251 3070 elastic 5.76 × 1010 lithosphere

2 6251–5951 3070 1021 5.76 × 1010 shallow upper mantle

3 5951–5701 3850 1021 1.06 × 1011 transition zone

4 5701–3480 4970 1021 2.16 × 1011 lower mantle

5 3480–0 10750 inviscid 0 inviscid fluid core
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Fig. 1. – With s normalized by 1 kyr, plot of the function defined as f(D�(s)) = sgn(D�(s)) ×
log10(|D�(s)|) if |D(s)| > 10.0 and f(D�(s)) = D�(s)/10.0 if |D�(s)| ≤ 10.0 as a function of
log10(−1/(s × kyr)) and its zero crossings, providing the relaxation times Ti = −1/si, for the
5-layer incompressible model of table I and l = 2, 10, 100 from top to bottom. This calculation
and corresponding figure have been kindly provided by Shuang Yi, from the Key Laboratory of
Computational Geodynamics from the University of the Chinese Academy of Sciences (UCAS),
January 2015. This figure is fig. 2.2 of [2].
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of the abscissa, and for � = 2 they are TM2 = 2.01 × 107 yr, TM1 = 7.44 × 105 yr, due
to density contrasts between viscoelastic internal layers. To the left, towards shorter
times, we catch the core mode C0 = 9.48× 103 yr, the mantle mode M0 = 2.33× 103 yr,
the lithospheric mode L0 = 5.89 × 102 yr and then, at the shortest times, the couple of
transient relaxation times T1–T4, 4.92 × 102, 3.73 × 102, 2.83 × 102 and 2.55 × 102 yr.
Increasing the harmonic degree at � = 10 the transient relaxation times remain constant,
while the three modes L0, M0 and C0 move to the right, towards longer times, while
M1 and M2 do the opposite. When � = 100 the transient modes merge together and
the two adjacent modes become indistinguishable at this scale, apparently reducing the
nine modes to seven modes. The lithospheric mode L0 moves towards the slowest M1,
M2 modes, while the latter get close to one another.

Density contrasts thus provide the most important modal contributions, the buoyancy
modes, and the amplitude of the former, and the depth where these modes are triggered,
determine the characteristic time scale over which the density contrast interface adjusts
once displaced by any geophysical forcing. Each mode contribution, due to density,
viscosity, elasticity contrasts, or due to compressional dilatation and contraction, as
hereinafter, has its own clear and simple physical explanation.

Compressible layered models and the self-compressed compressible sphere share the
same normal modes of layered incompressible models and additional relaxations modes
associated to compressibility [10,4]:

– Each viscoelastic compressible layer triggers two modes. These paired modes are
called transient compressible modes as they have relatively short relaxation times
and usually labelled Zi+ and Zi−, with i = 1, 2, · · · . Within the same layer, also
an infinite denumerable set of modes is triggered. They are called dilatational
modes, labelled Dj , with j = 1, · · · ,∞, and their characteristic times converge to
the compressional transient time ς in the limit for j → ∞

(111) lim
j→∞

sDj
= −ς−1.

The normal modes defined above complete those for compressible Earth’s models with
compressional stratifications (γ = 0), when the initial density stratification is due to the
only self-compression of the Earth. Instead, compositional stratifications (γ �= 0) trigger
another infinite denumerable set of buoyancy modes with very long characteristic times.
They are called compositional modes, labelled Cj , with j = 1, · · · ,∞. These modes
can be both stable, sCj

< 0, and unstable, sCj
> 0, and their poles sCj

monotonically
converge to the origin of the Laplace domain for j → ∞

(112) lim
j→∞

sCj
= 0.

In the unstable case the compositional modes describe Rayleigh-Taylor instabilities
that occur on time scales of the order of the shortest characteristic time tC1 = −1/sC1 ,
with j = 1.

The presence of dilatational and compositional modes arises theoretical and com-
putational problems in obtaining all the contributions from normal modes, eq. (109).
However, it is sufficient to detect the first few of these modes in order that the Green
functions converge to the exact ones. In fact, for j → ∞, the residues kDj

and kCj
of
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dilatational and compositional modes go to zero sufficiently fast so that their summation
converges once the first few of them are taken into account [10,4].

Modal components to the deformation and gravity, resulting from the Correspondence
Principle, provide us with a clear physics and make possible a deep comprehension of the
intimate nature of the viscoelastic behaviour of the Earth, which would be impossible to
attain, for example, via standard integration in time.

It is thus possible, with the above rules, to determine the total number of modes of
eq. (107): the possibility of knowing in advance the total number of modes triggered by
the Earth’s model is quite useful, since this equation must be solved numerically and
this root-solving procedure is the only non-analytical part of the viscoelastic relaxation
method when incompressible models are considered.

The root-solving procedure usually consists of two parts: grid-spacing, followed by
a bisection algorithm. In the grid-spacing part, the s-domain is split into a number
of discrete intervals. For each s-value at a boundary of an interval, the value of the
determinant expressed by eq. (107) is calculated, after which this value is multiplied by
the value of the determinant of the s-value of the boundary next to it. If this product is
positive, then the determinant has not changed in sign (or has changed an even number
of times). If the product is negative, then we are sure that there is (at least) one root
inside the interval bounded by the two s-values for which the determinant was calculated.
In that case, the interval is split up in two parts, and the procedure of determining the
product of the determinant of the bounding s-values is repeated. The interval where the
determinant changes sign will result again in a negative product, and for this interval
the procedure of cutting the interval in two, etc., is repeated. Thus the s-value where
the determinant is equal to zero as in eq. (107) becomes progressively better estimated
with each further step in this bisection algorithm. Of course, it can happen that the
determinant changes sign over a small s-interval twice or even more times. It is thus
necessary to choose small grids in the s-domain (in practice, it appears that especially
the two modes of each T -mode pair have inverse relaxation times (s-values) that are very
close to each other). Only after the complete number (determined with the rules above)
of roots/modes of eq. (107) has been found can one be sure that the complete signal will
be retrieved after inverse-Laplace transformation. For this final step in the relaxation
modeling procedure we use the so-called method of complex contour integration.

3.1. Modal and non-modal contributions. – The Green function k̃(s) has thus two
different types of non-analyticity. The first comes from a denumerable set of poles
sj ∈ S0. The second comes from the continuous set N of the Maxwell and compressional
transient times τ and ς. According to [14], we will refer to these contributions as the
“modal” and “non-modal” contributions. The modal contribution can be explicited in
the viscoelastic Green function by making use of the residue theorem as in eq. (109)

(113) kV (t) =
∑

sj∈S0

kj esj t +
1

2π i

∮
Γ

kN (s) ds + kE δ(t),

where kV (t) stands for the viscous part of the Green function and k̃N (s) stands for the
non-modal contribution that we cannot further explicit and must be obtained by complex
integration along the closed contour Γ.

The non-modal contribution is inherently associated with the continuous variations
of the Maxwell and compressional transient times. Indeed these singularities do not
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contribute to the perturbations in the time domain if they are isolated points in the
Laplace s-domain [10, 15, 16]. This is the case for layered Earth’s models, where the
elastic parameter and the viscosity are constant within each layer, because the Maxwell
and compressional transient times do not vary within each layer. Equation (113) thus
becomes

(114) kV (t) =
∑

sj∈S0

kj esj t.

On the contrary, we have verified that a non-zero contribution comes from the set N
when it is continuous [4] and we must evaluate the complex contour integration along
the contour Γ in eq. (113).

4. – Next-generation gravity missions

The past generation of satellites devoted to measuring Earth’s gravity included
GOCE, a project of the European Space Agency in orbit from 2009 to 2013, and GRACE,
a collaboration project of NASA and the German Space Agency DLR, launched in 2002
and operating till late 2017. GOCE provided static full tensor gravity gradients over
the entire Earth (except 7 deg wide polar caps) with spatial resolution of about 200 km.
GRACE measured the time variation of the gravity gradient over a 220 km baseline
with about 500 km spatial resolution at 1 month intervals between successive gravity
maps. Continuity of the GRACE data series will be ensured by the GRACE Follow-On
(GFO) mission, launched in 2018. GFO is built on the GRACE blueprint with partial
spacecraft improvements and carries an experimental laser interferometer payload. On
a longer perspective, both ESA and NASA are considering next-generation gravity mis-
sions (NGGM) aiming to measure the temporal variations of the Earth’s gravity field over
a time span of several years with spatial resolution around 100 km and time resolution
of a few days. Recently, the successor to GRACE and GFO was recommended as a top
priority of the US Decadal Strategy for Earth Observation from Space. Low Earth orbit
satellite-to-satellite tracking (SST) is the technique for recovering the tiny time-variable
gravity field signal [17]. In this approach the gravity sensor consists of a pair of satellites
flying in loose formation and the measured quantity is the distance variation between the
satellites (d in fig. 2) induced by the gravity anomalies. Accelerometers on each satellite
measure the non-gravitational accelerations FDi produced by atmospheric drag, which
are separated from the gravity signal in the post-flight data processing. Like GRACE,
the NGGM will use the SST technique, but replacing the current radiofrequency rang-
ing system with a laser interferometer. Further improvements will come from flying on
a low, constant altitude orbit with the drag disturbances abated by drag-free control,
a technique demonstrated in GOCE. Furthermore, the temporal resolution in Earth’s
gravity sampling can be enhanced by flying two satellite pairs in the so-called Bender
constellation [18]: one pair in a near-polar orbit and one pair in a medium-inclination
orbit, as shown in fig. 3. The optimization of the satellite constellation for NGGM has
been the subject of a dedicated, ESA-funded study [19], which established the achievable
performance in the retrieval of the gravity field. This performance is consistent with
measuring the gravity anomalies caused by earthquakes with magnitudes lower than the
currently achieved Mw = 8.5–9. Moreover, two pairs of satellites can provide homoge-
nous coverage of the Earth leading to gravity field solutions with a revisiting frequency of
3 days, allowing to separate the co- and post-seismic contributions. As clearly portrayed
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Fig. 2. – SST technique, courtesy of Thales Alenia Space in Italy.

Fig. 3. – Satellite constellation, courtesy of Thales Alenia Space in Italy.

by fig. 2 and by the works [1,20,17], the NGGM can provide the scientific community with
a gravitational tomography of our planet, resolving the �, m dependence of the gravity
field, particularly for that part related to the seismic cycle, such as the post-seismic and
inter-seismic phases, not understood yet in terms of mass readjustment for earthquake
magnitudes lower than 8.5–9.

5. – Gravity signals from a Mw = 7.0 scenario earthquake

This section is devoted to the presentatation of the gravitational effects of a scenario
Mw = 7.0 normal fault earthquake, which could be considered representative of a strong
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Fig. 4. – Characteristics of the fault for normal faulting, defining the angles of dip and strike.
For the two cases under study the length of the fault is fixed at 45 km, the width at 30 km, the
dip at 60◦, the strike at 120◦.

earthquake in Italy, once considered the Mw = 6.9 1980 Irpinia earthquake. Normal
faulting is associated with extensional tectonics, characterizing the deformation style of
the central and southern Apennines, associated with the displacements of the external
part of the Apennines towards the North- North-East direction compared to the inner
part of the chain moving grossly to the North- North-West direction, slower than the ex-
ternal Adriatic part, as visible from GPS data [21] and from physical models predicting
the horizontal strain and stress tensor, on the basis of the major tectonic forces in the
Central Mediterranean, as the Africa-Eurasia continental collision and subduction under-
neath the Calabrian Arc [22,23]. The results are based on the fully realistic compressible
Earth’s model presented in sects. 1–3.

The modelling of the post-seismic phase of a scenario Mw = 7.0 earthquake, compa-
rable in magnitude with the 1980 Irpinia earthquake, provides a clear example regarding
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Fig. 5. – Shallow slip: slip over the fault, described by a biquadratic spline, for this shallow fault
extending from 0 km to 26 km depth. The maximum slip is 3.8 m at 7.4 km.

the potential exploitation of the Earth’s modelling presented in this work coupled with
the NGGM data: vertical rates of the Earth’s crust of the order of millimetres per year
and wavelength of about 50 km, have been obtained by fitting vertical displacements from
an old incompressible spherical model, building on the same methodology presented in
sects. 1-2, with levelling data [24]. This modelling provided the first demonstrable ev-
idence of post-seismic effects in the Mediterranean following a normal fault earthquake
within the frame of extensional tectonics. The post-seismic vertical displacements oc-
curring over the 4 yr time span of the levelling campaigns carried out over the epicentral
area are expected to produce a gravity signal which could nowadays hardly be visible
with the current GRACE accuracy, suggesting that exploiting the incoming NGGM high-
resolution data, in time and space, could make a step forward in our understanding of
the physics of the seismic cycle within the frame of the herein self-gravitating Earth’s
models.

Figure 4 portrays the characteristics of the normal fault earthquake considered in this
section, with the two blue opposite arrows on the two sides of the fault depicting the
abrupt relative motion in extension during the earthquake, as for a normal fault; the
angle of dip is defined as the angle between the fault’s surface and the Earth’s surface.
In this figure the two portions of the crust overlying and underlying the fault are also
defined in panel (B), named hanging wall and foot wall. The dip angle is fixed at 60◦,
dipping to the west, and this value is characteristic of normal faulting in the Apennines,
but differs from that of the 1980 Irpinia earthquake, dipping to the east rather than to the
west: this would not be responsible of any difficulty in the interpretation of the following
results, since normal faulting dipping to the east would simple require, according to fig. 4,
exchanging the positive and negative gravity values.

Figure 5 portrays the slip over the fault, described by a biquadratic spline which goes
to zero at the edges of the fault, except for the shallow case in which the slip reaches the
Earth’s surface and differs from zero along the line of strike, which is 120◦ as specified
in the caption of fig. 4. The mid point of the fault along the line of strike is at 16.31◦

E longitude and 39.82◦ N latitude. The largest slip at the hypocentre is 4 m, larger than
the maximum 2.5 m inverted slip from levelling data of the 1980 Irpinia earthquake on
the basis of an old incompressible model
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Fig. 6. – Shallow source, full resolution. Panel (A), co-seismic gravity anomaly, panel (B), steady-
state gravity anomaly (after post-seismic displacement) and their difference, panel (C), in μGal.

Figure 6 shows the co-seismic gravity, or gravity anomaly, from the normal fault
earthquake evaluated at the Earth’s surface, in μGal, summing all the harmonics well
beyond convergence, namely 500 000 harmonics: the top panel (A) represents the gravity
signal of the earthquake when the Earth has reached its elastostatic equilibrium after
the seismic waves have propagated, allowing the Earth to acquire a permanent elastic
deformation. The solid rectangle represents the fault overprinted by the negative gravity
anomaly and the black lines represent the zero, the transition between the negative
anomalies, light green, to the positive ones, light yellow: comparison with fig. 5 indicates
that the negative anomaly stands over the hanging wall, the portion of the crust over the
fault in fig. 4, where the crust is subject to a general subsidence or downwarping, while
a smaller positive anomaly overprints the footwall of the fault. The clear cut between
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negative and positive values is caused by the fault reaching the Earth’s surface and by
the summation over such a large number of harmonics to guarantee that the gravity
discontinuity at the fault’s trace at the Earth’s surface is well reproduced.

The gravity signal is characterized by a dipolar pattern, negative in the South-West
and positive in the North-East, with respect to the clear cut at the edge fault reaching
the Earth’s surface, where the gravity anomaly is zero. The negative gravity anomaly
is due to the downwarping of the Earth’s crust, as also indicated by the down-dipping
arrow in fig. 4 in the hanging wall, responsible for a layer of air substituting the crustal
material at the Earth’s surface and for the downwarping of the interfaces at depth be-
tween layers of different densities, with lighter material substituting heavier ones, finally
ending into a mass deficit with respect to the situation before the earthquake occur-
rence. The positive gravity anomaly is on the contrary caused by the upwarping of
the crust, with denser material substituting now lighter material, both at the surface
and at depth. The peak-to-peak anomaly is about 200μGal, with the negative value
larger by around a factor three with respect to the positive value, indicating that the
downwarping of the crust is more important compared to the upwarping for a normal
fault earthquake and that the upwarping is the flexural response of the crust to the
downwarping.

The middle panel (B) represents the gravity anomaly at steady state, after post-
seismic deformation has come to an end, so it includes the elastic contribution plus the
viscous contribution due to stress relaxation of the viscoelastic material beneath the
50 km uppermost elastic layer. In this work we are not interested in the time evolution
of the post-seismic gravity anomaly, but in the evaluation of the full post-sesismic grav-
ity anomaly which is accumulated during the whole process of stress relaxation in the
viscoelastic portion of the Earth below the elastic top layer of 50 km. In fact, we are
interested in verifying whether the total amount of post-seismic gravity anomaly could
become visible during the whole duration time of the NGGM space gravity missions,
planned to be of about eleven years [1]. In terms of the Maxwell solid, steady state
means that the shear relaxation function q(t) in eq. (5) has fully relaxed, or that the
time t is longer than the relaxation time τ . For the present case of a realistic compress-
ible model based on the density and elastic stratification of the PREM [7], we lose to a
certain extent the concept of viscoelastic normal modes as depicted in fig. 1 for a 5-layer
incompressible Earth’s model and representing the counterpart of the simple Maxwell
solid of eq. (5). As we have explained in sect. 3, the current realistic model is character-
ized by a richer spectrum of viscoelastic normal modes, including a continuous spectrum
of modes in the Laplace domain requiring, as we have seen, a complex contour integration
in the s-domain rather than the Residue Theorem, in order to include a denumerably
infinite set of dilatational modes, compositional modes or even Raileigh-Taylor instability
modes, as well as contributions from the continuous spectrum. The viscous contribution
is about one order of magnitude lower than the elastic co-seismic contribution, as better
seen in the panel (C) of fig. 6.

Comparing panel (B) with panel (A), it is striking that the area of light yellow repre-
senting a positive gravity anomaly widens with respect to the area of light green, meaning
that there is a global gain of positive gravity anomaly, the latter appearing also in prox-
imity of the negative and positive peaks, as made evident by the reduction of the area of
negative anomaly and by an enlargement of the area of positive anomaly. Post-seismic
deformation is thus responsible for a global increase of positive gravity anomalies, both
locally and globally, and this is made evident in panel (C), which portrays the difference
between panel (B) and panel (A).
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Three findings are striking: the first is the smaller amplitude of the viscous signal
by one order of magnitude compared to the co-seismic one, as made evident by the
change in the gravity scales, the second is the broadening of the signal, now extending to
distances of several times the length of the fault, as shown by the zero curve in panel (C)
compared to panel (B) where the zero curve has dimensions comparable to those of the
fault, the third is that for distances larger than the dimensions of the fault the gravity
anomaly is positive, indicating a broad gain of mass centred over the epicentral area.
In order to understand this third finding, we need to remind that the fault in extension
is located above the neutral plane of the 50 km thick outermost elastic layer, which is
responsible for the smooth upwarping when the final configuration of the elastic layer is
sustained solely by the elastic stresses stored in the plate, after full relaxation took place
underneath.

At full resolution, post-seismic deformation is responsible for a positive gravity
anomaly of 12 μGal, about a factor 17 smaller than the elastic co-seismic contribution.
Depending on the viscosity of the mantle layer underneath the elastic one, post-seismic
deformation could occur on time scales ranging from years to thousand years, but it
is obvious that the time scale that could be relevant for the NGGM gravity missions
ranges from months to years and decades, since this mission is supposed to fly for about
eleven years. The time scales portrayed by fig. 1 range from 102 to 105 yr for the relevant
modes (except the transient T ones) and for the harmonic degree � = 2, which is the
mode containing the widest interval in time scales, with the � = 10, 100 ones contained in
this interval: these values are obtained for a reference mantle viscosity of 1021 Pa s which
is too stiff to be relevant for post-seismic deformation and represents in fact the mantle
viscosity which is obtained in Post Glacial Rebound studies [25,26] or in mantle convec-
tion simulations [27]. These time scales move to shorter ones for realistic viscosities of
the asthenosphere of about 1018–1019 Pa s or for viscosities of the transition zone in the
crust, sandwiched between the brittle top elastic crust and the stiffer lower crust, char-
acterized by viscosities that can well be of the order of 1018 Pa s, so that the post-seismic
gravity anomaly can reach its final steady-state value over a few years or few decades,
well within or comparable in the slowest case with the flight time of the NGGM.

Concerning the detectability of the gravitational time-dependent post-seismic signal,
we have to model the latter in the NGGM bandwidth, up to 250 spherical harmonics, or
160 km wavelength, which means a resolution of 80 km (half-wavelength) as for GOCE
in space and around 1μGal/yr as for GRACE in time. In fig. 7 we thus portray the
gravity anomaly patterns at the GOCE spatial resolution, which means summing over
250 harmonics and reaching a spatial resolution of 80 km (half-wavelength). For compen-
sating the poorly known short-wavelength spherical harmonic coefficients, we also apply
the Jekeli’s Gaussian filter [28] of radius RW = 80 km (see appendix A for details).

Comparison of the (A) panels of figs. 6 and 7 shows that the co-seismic signal is subject
to a substantial decrease of about two orders of magnitude at the GOCE resolution
compared to the full resolution, which is not the case for the viscous contribution. In
fact, comparison of the (C) panels of these two figures, and comparing both with the (B)
panel of fig. 7, shows that the positive viscous contribution is reduced only by a factor
three, from 12 to 4 μGal, when passing from the full to the 80 km spatial resolution.
At the GOCE resolution, and for this scenario earthquake where viscoelastic relaxation
occurs at the depth of 50 km, the viscous post-seismic contribution is better resolvable
than the elastic co-seismic one, and is in principle resolvable by the NGGM, once the
peak-to-peak value of about 5μGal, from the white to the light blue in panels (B) or (C)
in fig. 7, is gained over the flight duration of the gravity mission. The dipolar co-seismic
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Fig. 7. – As in fig. 6, but at GOCE resolution.

pattern is maintained also at the GOCE spatial resolution, and the arguments raised
when discussing fig. 6 regarding the post-seismic pattern are valid also for fig. 7.

This behaviour is confirmed, and even strengthened, when the GRACE spatial res-
olution is considered in fig. 8, summing up to spherical harmonic degree � = 90 and
after spatial average with the Jekeli’s Gaussian filter [28] of radius RW = 300 km (see
appendix A for details). The co-seismic signal of panel (A) is largely broadened with
respect to the full-resolution case of fig. 6, or even with respect to the GOCE case. The
co-seismic pattern, although reduced to 0.1 μGal, portrays a well-shaped dipolar pattern.
It is interesting to note that the viscous contribution, of about 2.5μGal, is reduced by a
factor two with respect to the GOCE case. Both at the GOCE an GRACE resolution,
the post-seismic signal is foreseen to be resolvable at the NGGM spatial and time reso-
lution, better than the co-seismic contribution, when viscous relaxation occurs as in this
case below the elastic crust. The findings from figs. 6–8 indicate that gravity missions at



34 R. SABADINI and G. CAMBIOTTI

11.0˚ 12.0˚ 13.0˚ 14.0˚ 15.0˚ 16.0˚ 17.0˚ 18.0˚ 19.0˚ 20.0˚ 21.0˚ 22.0˚
35.0˚

36.0˚

37.0˚

38.0˚

39.0˚

40.0˚

41.0˚

42.0˚

43.0˚

44.0˚

45.0˚

11.0˚ 12.0˚ 13.0˚ 14.0˚ 15.0˚ 16.0˚ 17.0˚ 18.0˚ 19.0˚ 20.0˚ 21.0˚ 22.0˚
35.0˚

36.0˚

37.0˚

38.0˚

39.0˚

40.0˚

41.0˚

42.0˚

43.0˚

44.0˚

45.0˚

−2.0 −1.6 −1.2 −0.8 −0.4 0.0 0.4 0.8 1.2 1.6 2.0
µGal

(C)

11.0˚ 12.0˚ 13.0˚ 14.0˚ 15.0˚ 16.0˚ 17.0˚ 18.0˚ 19.0˚ 20.0˚ 21.0˚ 22.0˚
35.0˚

36.0˚

37.0˚

38.0˚

39.0˚

40.0˚

41.0˚

42.0˚

43.0˚

44.0˚

45.0˚

11.0˚ 12.0˚ 13.0˚ 14.0˚ 15.0˚ 16.0˚ 17.0˚ 18.0˚ 19.0˚ 20.0˚ 21.0˚ 22.0˚
35.0˚

36.0˚

37.0˚

38.0˚

39.0˚

40.0˚

41.0˚

42.0˚

43.0˚

44.0˚

45.0˚

−0.10−0.08−0.06−0.04−0.020.00 0.02 0.04 0.06 0.08 0.10
µGal

(A)

11.0˚ 12.0˚ 13.0˚ 14.0˚ 15.0˚ 16.0˚ 17.0˚ 18.0˚ 19.0˚ 20.0˚ 21.0˚ 22.0˚
35.0˚

36.0˚

37.0˚

38.0˚

39.0˚

40.0˚

41.0˚

42.0˚

43.0˚

44.0˚

45.0˚

11.0˚ 12.0˚ 13.0˚ 14.0˚ 15.0˚ 16.0˚ 17.0˚ 18.0˚ 19.0˚ 20.0˚ 21.0˚ 22.0˚
35.0˚

36.0˚

37.0˚

38.0˚

39.0˚

40.0˚

41.0˚

42.0˚

43.0˚

44.0˚

45.0˚

−2.0 −1.6 −1.2 −0.8 −0.4 0.0 0.4 0.8 1.2 1.6 2.0
µGal

(B)

Fig. 8. – As in fig. 6, but at GRACE resolution.

the GOCE spatial resolution and at the GRACE time resolution are expected to sample
the post-seismic deformation better than the co-seismic deformation. The broadening
of the post-seismic pattern compared to the co-seismic one enriches in fact the wave-
length content in the NGGM bandwidth, since viscous relaxation involves layers of the
Earth deeper than the top elastic crust where the source is located, so triggering longer
wavelengths compared to those from co-seismic deformation.

In this contest, it is interesting also to consider the effects of deepening the seismic
source, which is expected to trigger longer wavelengths once comparing with a shallow
source as in figs. 5–8. Figure 9 shows the slip distribution of the seismic source as
in fig. 5, but deepened by 10 km and going to zero at the top edge being now fully
embedded within the Earth. Figures 10–12 represent the counterparts of figs. 6–8, but
for this deeper source.
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Fig. 9. – Deep slip: slip over the fault, described by a biquadratic spline, for this fault extending
from 10 km to 36 km depth; the maximum slip is 5 m at 23 km depth.

The full resolution fig. 10, panel (A), shows that the deepening of the source has a
twofold impact on the co-seismic dipolar gravity anomaly, by reducing by about a factor
three the amplitude of the anomaly, now within the scale of 60μGal and by widening by
about the same amount the surface anomaly signature. The viscous relaxation gravity
signal overprints the co-seismic signal by increasing the positive gravity anomaly and by
decreasing the negative one, without affecting the lateral dimension of the pattern. Panel
(C), representing the only viscous contribution, is resembling the viscous contribution
from the shallow source of fig. 6, in terms of characteristic wavelength and amplitude,
about 12 μGal, which is not surprising since, once triggered, the viscous contribution
is controlled by the depth of the relaxing viscoelastic layer, the same in figs. 6 and 10;
we note only a slightly reduced flexural response represented by the gravity decrease
in the southwest with respect to the positive maximum. The deepening of the source
has instead a major effect on the amplitude and wavelength of the co-seismic gravity
anomaly.

When we move to fig. 11 GOCE resolution, we note that the decrease in the gravity
signal from full and GOCE resolution for the deep source is not as large as for the shallow
source, which is physically sound since the deepening of the source enriches the longer-
wavelength content compared to the shallow source as shown by the pattern enlargement
of panel (A): compared to the shallow source, the reduction from the GOCE resolution
compared to the full case is about a factor sixty rather than about two hundreds. The
GOCE resolution post-seismic signal is reduced by about a factor two compared to the
shallow source GOCE case. The ratio between the post-seismic to co-seismic signal
is 2.5 for the deep source GOCE case, compared to 10 for the shallow case, which also
indicates the enrichment of long-wavelength content in the co-seismic gravity signal when
the source is deep.

Panel (C), fig. 11, confirms this finding at the GRACE resolution, fig. 12, panel (C),
although the ratio between the post-seismic and co-seismic gravity contributions is about
doubled compared to the GOCE resolution case.
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Fig. 10. – Deep source, full resolution. Panel (A), co-seismic gravity anomaly, panel (B), steady-
state gravity anomaly (after post-seismic displacement) and their difference, panel (C), in μGal.

6. – Gravity signals from large earthquakes at subduction zones

This section is devoted to the presentation of results regarding the large 2004 Suma-
tran earthquake which prove the capability of gravitational seismology to constrain the
mass readjustment at large depths, from the ocean overlying the epicentral area to the
uppermost portion of the Earth’s mantle.

The analysis of GRACE Level 2 data time series from the Center for Space Research
(CSR) and GeoForschungsZentrum (GFZ) performed in [29], allowed us to extract the co-
seismic gravity signal caused by the 2004 Sumatran earthquake, based on the compress-
ible self-gravitating Earth model described in sects. 1–3 and including the gravitational
effects of the sea level feedback, namely the redistribution of the ocean water during
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Fig. 11. – As in fig. 10, but at GOCE resolution.

the co-seismic deformation of the ocean bottom in the epicentral area. The 2004 Suma-
tran earthquake has a magnitude Mw = 9.3, and is thus among the largest earthquakes
ever recorded since the beginning of the instrumental seismology. The mechanism of this
earthquake is opposite to the normal fault scenario earthquake considered in the previous
section, since it is associated to the compression of the Earth’s crust, rather than its exten-
sion, at the subduction zone where the oceanic lithosphere of the Indian Ocean subducts,
or penetrates within the mantle, underneath the Eurasian continental crust in the Suma-
tran region. In this section, instead of considering as case study a Mw = 7 scenario earth-
quake purposely designed for providing the synthetic gravity pattern for the incoming
NGGM, we show the observed GRACE gravity pattern produced by a real earthquake,
demonstrating that this kind of gravitational data can be used to estimate the mass
readjustment at great depth in the Earth during the occurrence of the earthquakes, thus
allowing us to make a step ahead in our understanding of the physics of the earthquakes.
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Fig. 12. – As in fig. 10, but at GRACE resolution.

Figure 13 shows the co-seismic gravity jump and the linear trends extracted from
GRACE data after the 2004 Sumatran earthquake overprinting the Sumatra and Thai-
land geography, sampling the Sumatran region every 1.4◦. In this case, GRACE gravity
data have been averaged in space using the DDK3 anisotropic filter [30] that is com-
parable with the Jekely’s Gaussian filter [28] of radius RW = 220 km. From the origi-
nal time series fitting, panel (a), we obtain a maximum co-seismic gravity anomaly of
+7.5±0.6 μGal, and minimum, 13.1±0.8 μGal at the points (95.6◦, 0.7◦) and (97.0◦, 7.7◦).
These estimates differ by less than 4 per cent from the maximum, +7.5 ± 0.6 μGal, and
minimum, 12.7±1.0 μGal, gravity values obtained at the same points from the smoothed
time series fitting, as in panel (c).

The strike of the normal Mw = 7 scenario earthquake of the previous section is 120◦

while that of the Sumatran fault is 343◦ as obtained by [31], dipping with different an-
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Fig. 13. – Co-seismic gravity anomalies and linear trends obtained by linear fitting to the original
GRACE data, panel (a) and (b), and smoothed GRACE data time series, panel (c) and (d), for
the 2004 Sumatran earthquake. This figure is fig. 6 of [29].

gles, about 60◦ to the West for the normal fault and varying from about 13◦ at shallow
depths to about 30◦ to the East at large depths for the Sumatran earthquake. Such a
large difference in the dip of the faults is of course a consequence of the two different
tectonic styles, the slow extensional one of the Apennines and the fast converging one
of the Sumatran region. Regarding fig. 4, if we want to visualize the relative motion
of the two parts of the fault for the Sumatran earthquake, we have to reverse the two
arrows and the fault immersion at low angles to the right rather than to the left in order
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to account for the thrust earthquake occurring at the interface between the subduct-
ing oceanic Indian plate converging towards the continental Eurasian plate, at rates of
about 7 cm/yr. This high convergence rate, responsible for the Mw = 9.3 2004 Suma-
tran thrust earthquake, should be compared with the extensional rates in the southern
Apennines of a few millimetres per year, in order to realize why at fast converging sub-
duction zones earthquakes of magnitudes as high as Mw = 9 can be generated, compared
to lower magnitudes Mw = 6–7 normal fault earthquakes at slow extensional tectonic
environments. If we reverse the relative motion between the two parts of the fault, then
we can understand why the gravity patterns of figs. 6–8 and 9–12 portray an inverted
polarity, with negative gravity anomaly, blue, in the South-West and positive gravity
anomaly, red, in the North-East for the normal fault of figs. 6–8 and 10–12, and reversed
colours for the thrust earthquake of fig. 13. Figure 4 shows that the portion of the crust
in the South-West is subject to subsidence, which produces a mass deficit, since dense
crustal material of about 2750 kg/m3 is substituted by air, and then the blue gravity
low, while in fig. 13 the opposite motion of the Indian and Eurasian portions of the crust
are responsible for the upwarping of the crust in the southern part of the Eurasian plate
overriding onto the Indian one, which causes a mass excess and thus a positive gravity
anomaly, red. The negative gravity anomaly in the North-East is caused by the water
of the Indian ocean, which leaves the epicentral region, being displaced away from the
epicentre by the tsunami, thus causing a mass deficit and a gravity low, combined with
the flexural response of the Eurasia plate, downwarping in the North-East, with a mass
deficit now contributing to the gravity low together with the mass deficit left by the
tsunami.

Panels (b) and (d) of fig. 13 represent the rate of gravity change in μGal/yr associated
to the post-seismic deformation after the co-seismic one, providing a value of about
3.5 μGal/yr from peak-to-peak. It is interesting to compare this post-seismic pattern
at the GRACE spatial resolution with the post-seismic pattern given in panels (C) of
figs. 7 and 11, providing the whole post-seismic gravity contribution from the normal
fault Mw = 7 scenario earthquake at the GOCE spatial resolution, coinciding with the
spatial NGGM resolution, of about 3–4μGal peak-to-peak, depending on the source
depth, accumulated during the whole post-seismic history, which means that the rate of
gravity change will depend, as stated in the previous section, on the viscosity of the layers
where stress relaxation occurs. Although these two post-seismic contributions cannot be
directly compared, these findings indicate that GRACE has demonstrated the capability
to detect the post-seismic gravity change, of the order of several μGal per year for huge
earthquakes of magnitudes of about Mw = 9. If the 3–4 μGal is accumulated over time
scales of years, the NGGM are expected to detect the post-seismic gravity changes from
earthquake magnitudes as low as Mw = 7 at the GOCE spatial resolution, being around
1 μGal/yr the expected accuracy in the gravity NGGM measurements at the same spatial
resolution of the GOCE mission.

This mass readjustment, contributing to the gravity minima and maxima as shown in
the GRACE data of fig. 13, can be better understood by watching the results of figs. 14–
16, where the gravity effects of the mass rearrangements in the different parts of the
planet are portrayed, including the gravity low due the mass deficit of the ocean water
washed out from the epicentral region by the tsunami as shown in fig. 16.

Instead of fig. 13 observational results, fig. 14 shows the modeled contributions to
the gravity anomaly, based on the seismological solution by [31] to constrain the fault
parameters and smoothed according to the GRACE spatial resolution, resulting from the
different parts of the Earth at different depths during the co-seismic deformation, from
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Fig. 14. – Filtered co-seismic gravity anomalies for compressible O-PREM, including a uniformly
thick ocean overlying the Solid Earth PREM as in [7], due to volume changes of the mantle, panel
(a), of the crust, panel (b), and due to the volume changes localized at the fault discontinuity,
panel (c), obtained using the seismic source model of [31] modified as discussed in [29]. Panel
(d) provides the gravity anomaly pattern due to the sum of the previous panels (a)–(c). This
figure is fig. 11 of [29].

the mantle to the surface: these contributions are obtained by means of our compressible,
self-gravitating model described in the previous sections. These results include the effects
of the ocean water redistribution within a PREM model overlayed by an ocean of uniform
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thickness, which is thus named O-PREM standing for Ocean-PREM, and are obtained
by fitting our model with the co-seismic GRACE data of fig. 13.

The [31] solution is based on the Centroid Moment Tensor (CMT) analysis of the
2004 Sumatran earthquake, with five point sources used in the inversion to reproduce
the propagating slip. These five point sources are visualized in fig. 1 of [31]. The geo-
graphical distribution of these five sources follows the arcuate geometry of the subduc-
tion trench and the average strike of the sources is 343◦: the largest seismic moment
release is provided by the point source facing the northernmost part of the Sumatran
island, with the five sources following the shape of the arcuate island arc, north of Suma-
tra.

Panel (a) shows the effects on the gravity due to volume changes in the mantle (from
the core mantle boundary, at 3485 km from the Earth’s centre, to the bottom of the
crust), although the localized positive gravity anomaly indicates that the volume changes
occur in the uppermost part of the mantle down to depths comparable with the lateral
extension of the anomaly of the order of a few hundred kilometres downward from the
bottom of the crust. The positive gravity anomaly indicates a mass excess, which means
that the mantle material is being compressed underneath the epicentral area, as expected
for convergence and thus crustal shortening in the horizontal direction and widening the
vertical direction: this process causes the downwarping of the crust-mantle interface and
thus the compression of the mantle.

Panel (b) of fig. 14 shows the gravity anomaly due to the co-seismic volume changes in
the crust, not including the effects in proximity of the fault, characterized by a maximum
of 6.6 μGal in the South-West and a minimum of 7.0μGal in the North-East. This dipolar
gravity pattern indicates that the volume changes due to a thrust earthquake, such as the
Sumatran earthquake, cause both compression and dilatation within the crust, in con-
cordance with the seismic radiation pattern from thrust earthquakes. When we consider
the effects of volume changes of the crustal material localized at the fault discontinuity
in panel (c), we obtain a large dilatation, characterized by a minimum of 40.7μGal: this
dilatation is caused by the abrupt de-compression of the crust when it is unlocked by the
earthquake. The evaluation of the gravity effects from the volume changes in proximity
of the fault separately from those occurring in the crust not including the gouge of the
fault, allows to correctly obtain the deformation style within the crust as in panel (b),
which includes compression within the subduction oceanic lithosphere.

By considering the total contribution in panel (d) from the co-seismic volume changes
of the mantle, panel (a), and of the crust, panel (b), together with the large dilatation
localized at the fault discontinuity of panel (c), we predict a gravity pattern characterized
by two maxima southwards, 5.3 μGal, and northward, 2.9μGal, with respect to a more
pronounced minimum of 21.5μGal, in the near field of the Sumatran earthquake. In
fig. 14 we demonstrate the importance of discriminating the effects of the co-seismic
volume changes in the different layers of the Earth from the dilatation localized at the
fault discontinuity. Otherwise, since the dilatation at the fault dominates over the volume
changes effects in the crust, we would erroneously conclude that thrust earthquakes cause
an overall dilatation of the crust, which is not physically sound because it does not
reflect the pattern of compression and extension induced by the seismic forcing as also
enlightened by the seismic radiation from a thrust earthquake.

Beyond the above considerations, the analysis of fig. 14 is meaningful because it shows
that contributions to gravity anomalies due to co-seismic volume changes of the mantle
and of the crust are important, being comparable with the full co-seismic gravity anomaly
values, as those from the observational data of fig. 13. This indicates that compressibility



THE PHYSICS OF EARTHQUAKES FROM SPACE GRAVITY MISSIONS 43

Fig. 15. – Filtered co-seismic gravity anomalies for compressible, panel (a), and incompressible,
panel (b), S-PREM, obtained using the seismic source model of [31] modified as discussed in [29].
This figure is fig. 12 of [29].

is an important physical characteristics of the co-seismic gravity perturbations. It is thus
important to exploit further the effects of compressibility by comparing compressible and
incompressible Earth models in order to analyze in detail the role of compressibility on
the earthquake physics, as done in fig. 15.

In fig. 15 we compare the smoothed co-seismic gravity anomalies for compressible,
panel (a), and incompressible, panel (b), models, where the S-PREM stands for the
complete Solid Earth processes without the ocean as in O-PREM, including the effects of
both volume changes and gravity signals from interface displacements where the density
is discontinuous, as for example the Earth’s surface and the Moho discontinuity between
the crust and the mantle. Compared to fig. 14, fig. 15 thus includes the effects of
the topography perturbations, where materials of different densities, as those of the
mantle, the crust and the air, are displaced. The peak-to-peak gravity anomalies are
22.8 and 23.4 μGal, for compressible, panel (a), and incompressible, panel (b), Solid
Earth models, without the effects of the ocean. The two bipolar patterns are asymmetric
toward the positive co-seismic gravity anomaly, particularly in the incompressible case.
By comparing panel (a) of fig. 15 with panel (c) of fig. 14, we visualize the effect of the
surface topography included in panel (a), which increases the positive gravity values in the
South-West, thanks to the upwarping of the crust: the effect of the surface topography
is thus to make the S-PREM model more similar to the observed co-seismic gravity
pattern of fig. 13 compared to those of fig. 14, not including the gravity effects from
the surface topography. Comparing figs. 13 and 15, we note that in the observational
data the negative gravity values are larger in magnitude than the positive ones, opposite
to the findings from fig. 15: in order to bring into concordance model predictions and
observations, we must include the effects of the ocean, as in fig. 16.
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Fig. 16. – Filtered co-seismic gravity anomalies for compressible O-PREM obtained using the
(a) original and (b) modified seismic source models of [31], with source depths below, 25 km,
and above, 15 km, the Moho discontinuity, respectively. The dip angles for the modified seismic
source models have been increased by 50 per cent. This figure is fig. 9 of [29].

We show in fig. 16 the co-seismic gravity anomalies obtained from the compressible
O-PREM model, which includes the effects of the ocean water redistribution, different
from the panel (a) of fig. 15 regarding the compressible S-PREM model accounting solely
for the effects of the Solid Earth; panel (a) and (b) of this figure refer to two slightly
different versions of the seismological solution used to build the forcing associated to
the earthquake. In particular, panel (a) includes the sea level feedback and is based
on the seismic source model of [31], after smoothing. We find maximum, +8.6 μGal,
and minimum, 10.0 μGal, gravity anomalies at points (92.8◦, 2.1◦) and (97.0◦, 6.3◦). The
peak-to-peak gravity anomaly obtained from the model, +18.6 μGal, is in agreement,
within one-sigma error, with the observed one, +18.8 ± 1.7 μGal, while the asymmetry
coefficient AS representing the ratio between the maximum and minimum gravity values,
the latter changed in sign, is 1.2 and differs from the observed one, AS = 2.1 ± 0.5,
by about two-sigma error. Panel (b) portrays the co-seismic gravity anomalies for the
compressible O-PREM obtained using a modified version of the seismic source models
of [31], in which the source depth has been reduced with respect to panel (a). In this
case, although the peak-to-peak anomaly remains constant, the gravity pattern, with the
amplitude of the minimum larger than that of the maximum, is in accordance with the
observed pattern of fig. 13.

Material compressibility plays a crucial role in the modeling of the sea level feedback
of the O-PREM models, as shown in fig. 17, where we compare the co-seismic gravity
anomalies due to the sea level feedback of compressible, panel (a), and incompressible,
panel (b), models. Indeed, for the compressible case, the sea level feedback is responsible
for a large negative gravity anomaly in the near field, with a minimum of 10.7μGal.
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Fig. 17. – Filtered co-seismic gravity anomalies due to sea level feedback obtained by subtracting
(a) compressible and (b) incompressible O-PREM and S-PREM co-seismic gravity anomalies
and by using the seismic source model of [31] modified as discussed in Cambiotti et al. [29].
This figure is fig. 14 of [29].

These panels are obtained by subtracting the gravity patterns of the O-PREM models,
for example the O-PREM model of fig. 16, panel (a), from the corresponding Solid Earth
models S-PREM of fig. 15. For the incompressible case, the sea level feedback causes
co-seismic gravity anomalies characterized by a bipolar pattern, with maximum and
minimum of 3.3 and 5.3μGal, respectively, which is opposite to the bipolar pattern
of the co-seismic gravity anomalies of the incompressible S-PREM, fig. 15 panel (b).
This means that the sea level feedback obtained from incompressible models reduces the
magnitude of the maximum and minimum co-seismic gravity anomalies, thus reducing
the peak-to-peak gravity anomaly, and does not explain the spatial asymmetry observed
in GRACE data, where the gravity low is larger in magnitude than the gravity high.

The combined effects of the volume changes due to compressibility and those of the
ocean water redistribution, or ocean feedback, with the water leaving with the tsunami
the region of the uplifted ocean bottom, is responsible for the observed asymmetry of
the observed gravity pattern recovered from GRACE data at Sumatra.

7. – Conclusions

The re-analysis of the already published results (which appeared in [29]) of the pre-
vious sect. 6, as well as the findings from other authors, as Han et al. [32]; de Linage et
al. [33], show that the gravity anomalies caused by large thrust earthquakes at subduc-
tion zones, with magnitude larger than Mw = 8.5–9.0, can reveal a new physics, beyond
the possibilities of the classical seismology based on wave propagation. In fact, Gravita-
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tional Seismology is based on the detection from space of the gravity signals arising from
mass readjustment, rather than from displacements at seismometers localized essentially
over lands. First of all, gravity space missions can detect signals over areas not covered
by seismometers, as in the oceans, thus providing a uniform coverage in the data acqui-
sition and fruitfully complementing the classical seismology. The discussion of the 2004
Sumatran results carried out in sect. 6 demonstrates this point very clearly, since when
data analysis is complemented by the adequate modelling as discussed above and as de-
tailed in [29], we can extract information that would be impossible to obtain from other
methodologies. These new results and this new physics has been made possible by the
compressible, self-gravitating Earth model described in the present study, which is fully
realistic as it builds on the seismological Preliminary Reference Earth Model [7]. Our
approach differs from that followed by [34] and [33], who used compressible models based
on a free-oscillation scheme. It is worthwhile to emphasize that, in order to obtain the
results of sect. 6 on the 2004 Sumatran earthquake regarding the different contributions
from compression or dilatation occurring during the co-seismic deformation within each
layer of the Earth, or those resulting from the radial displacements of the surface and
inner interfaces separating layers of different densities, we have decomposed the Poisson
equation in order to discriminate between gravitational perturbations due to volume and
topography changes, as detailed in [29]. This new mathematical development has allowed
us to address the style of deformation, dilatational versus compressional ones, without
the limitations suffered by plane half-space models, as in [32]. Furthermore, instead of
the compressible model used by [35] to quantify the effects of the 2004 Sumatran earth-
quake on the Earth’s rotation, based on [36] analytical approximation of compressibility,
as discussed in [10], our model now fully accounts for the effects of compressibility, both
in the initial state and during the perturbations [4], as described in the first three sections
of this study, on the basis of the Runge-Kutta integration in the radial variable of the
differential equations describing the momentum conservation and self-gravitation.

The results from sect. 5 indicate that, thanks to the technological achievements de-
scribed in sect. 4, we can nowadays overcome the limitation posed by the possibility of
detecting the gravity signals only for earthquakes of magnitudes higher than Mw = 8.5.
Being such huge earthquakes those occurring at subduction zones within a tectonic en-
vironment associated to compression, the new technology and the NGGM give us the
opportunity to disclose the new physics herein described for earthquakes with magni-
tudes as low as Mw = 7 and different tectonic environments, such as extensional ones as
in southern Italy.

In particular, the new findings of sect. 5 show that at the spatial resolution of GOCE,
the NGGM has the capability to resolve not only the co-seismic-gravity signal, but also
the post-seismic one. In fact, we have shown that the post-seismic contribution can be
as high as 5–8 μGal, for the deep and shallow sources, which makes the detection of the
post-seismic contribution feasible, since the expected flight duration of the NGGM is
eleven years, representing a span of time during which the total amount of this post-
seismic contribution, or at least a major part of it, will be accumulated and thus made
visible by the gravity mission.
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Appendix A.

Spatial resolution

In order to discuss the gravity anomalies caused by earthquakes at the different spatial
resolutions of the space gravity missions, we consider the following spatial averages of
the perturbation of the gravitational potential:

(A.1) φ̂Δ(r, θ, ϕ) =
∫

Ω′
φΔ(r, θ′, ϕ′)W (α) dΩ′,

where W is the Jekeli’s Gaussian averaging function [28]

(A.2) W (α) =
b

2π

e−b (1−cos α)

1 − e−2 b
.

Here, α is the angle between the (θ, ϕ) and (θ′, ϕ′)

(A.3) cos α = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′)
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Fig. 18. – Coefficients W� of the Jekeli’s Gaussian filter of radius RW = 300 and 80 km (solid
and dashed lines).
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and b is a parameter that controls the smoothing process, usually expressed in terms of
the distance on the Earth surface, RW , at which W drops to 1/2 its value at α = 0 [37]

(A.4) b =
ln(2)

1 − cos(Rf/a)
,

that is W (RW /a) = W (0)/2.
We note that this spatial average acts as a low-pass filter and has the advantage

of compensating the poorly unknown, short-wavelength spherical harmonic coefficients.
Indeed, as shown in [28], the spherical harmonic coefficients of the smoothed gravitational
potential, Φ̂�m, become

(A.5) Φ̂�m = W� Φ�m,

where the coefficients W� can be computed with the following recursion relations:

W0 = 1;(A.6)

W1 = coth(−b) − 1
b

;

W� = W�−2 −
2 � − 1

b
W�−1.

The gravity anomalies at the GRACE and GOCE spatial resolution discussed in the
main text are obtained considering all spherical harmonic coefficients provided by the
two missions, up to � = 90 and 250, respectively, and applying a Jekeli’s Gaussian filter
with averaging radius of RW = 300 and 80 km, respectively. The coefficients W� are
shown in fig. 18.
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[12] Plag H.-P. and Jüttner H.-U., J. Geodyn., 20 (1995) 267.
[13] Vermeersen L. L. A. and Mitrovica J. X., Geophys. J. Int., 142 (2000) 351.
[14] Fang M. and Hager B. H., Geophys. J. Int., 123 (1995) 849.
[15] Spada G., Sabadini R., Yuen D. A. and Ricard Y., Geophys. J. Int., 109 (1992) 683.
[16] Vermeersen L. L. A. and Sabadini R., Geophys. J. Int., 129 (1997) 531.



THE PHYSICS OF EARTHQUAKES FROM SPACE GRAVITY MISSIONS 49

[17] Silvestrin P., Aguirre M., Massotti L., Leone B., Cesare S., Kern M. and
Haagmans R., Int. Assoc. Geodesy Symp., 136 (2012) 223.

[18] Bender P. L., Wiese D. N. and Nerem R. S., in Proceedings of the 3rd International
Symposium on Formation Flying, Missions and Technologies (ESA/ESTEC, Noordwijk)
2008, pp. 23–25.

[19] Pour S. I., Reubelt T., Sneeuw N., Daras I., Murbck M., Gruber T., Pail R.,

Weigelt M., van Dam T., Visser P., de Teixeira da Encarnao J., van den IJssel

J., Tonetti S., Cornara S. and Cesare S., Assessment of Satellite Constellations
for Monitoring the Variations in Earth’s Gravity Field, Final Report (ESA Contract
4000108663/13/NL/MV, University of Stuttgart, Institute of Geodesy) 2015.

[20] Pail R., Bingham R., Braitenberg C., Dobslaw H., Eicker A., Güntner A.,
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